Normative Principles for Evaluating Fairness in Machine Learning

D. Leben
{"title":"Normative Principles for Evaluating Fairness in Machine Learning","authors":"D. Leben","doi":"10.1145/3375627.3375808","DOIUrl":null,"url":null,"abstract":"There are many incompatible ways to measure fair outcomes for machine learning algorithms. The goal of this paper is to characterize rates of success and error across protected groups (race, gender, sexual orientation) as a distribution problem, and describe the possible solutions to this problem according to different normative principles from moral and political philosophy. These normative principles are based on various competing attributes within a distribution problem: intentions, compensation, desert, consent, and consequences. Each principle will be applied to a sample risk-assessment classifier to demonstrate the philosophical arguments underlying different sets of fairness metrics.","PeriodicalId":93612,"journal":{"name":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375627.3375808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

There are many incompatible ways to measure fair outcomes for machine learning algorithms. The goal of this paper is to characterize rates of success and error across protected groups (race, gender, sexual orientation) as a distribution problem, and describe the possible solutions to this problem according to different normative principles from moral and political philosophy. These normative principles are based on various competing attributes within a distribution problem: intentions, compensation, desert, consent, and consequences. Each principle will be applied to a sample risk-assessment classifier to demonstrate the philosophical arguments underlying different sets of fairness metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估机器学习公平性的规范原则
有许多不兼容的方法来衡量机器学习算法的公平结果。本文的目标是将受保护群体(种族、性别、性取向)的成功率和错误率描述为一个分布问题,并根据道德和政治哲学的不同规范原则描述这个问题的可能解决方案。这些规范原则是基于分配问题中各种相互竞争的属性:意图、补偿、应得、同意和后果。每个原则都将应用于一个样本风险评估分类器,以展示不同公平性指标集背后的哲学论点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bias in Artificial Intelligence Models in Financial Services Privacy Preserving Machine Learning Systems AIES '22: AAAI/ACM Conference on AI, Ethics, and Society, Oxford, United Kingdom, May 19 - 21, 2021 To Scale: The Universalist and Imperialist Narrative of Big Tech AIES '21: AAAI/ACM Conference on AI, Ethics, and Society, Virtual Event, USA, May 19-21, 2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1