Gaussian Mixture-based Indoor Localization via Bluetooth Low Energy Sensors

Parvin Malekzadeh, Mohammad Salimibeni, M. Atashi, Mihai Barbulescu, K. Plataniotis, Arash Mohammadi
{"title":"Gaussian Mixture-based Indoor Localization via Bluetooth Low Energy Sensors","authors":"Parvin Malekzadeh, Mohammad Salimibeni, M. Atashi, Mihai Barbulescu, K. Plataniotis, Arash Mohammadi","doi":"10.1109/SENSORS43011.2019.8956950","DOIUrl":null,"url":null,"abstract":"A probabilistic Gaussian mixture model (GMM) of the Received Signal Strength Indicator (RSSI) is proposed to perform indoor localization via Bluetooth Low Energy (BLE) sensors. More specifically, to deal with the fact that RSSI-based solutions are prone to drastic fluctuations, GMMs are trained to more accurately represent the underlying distribution of the RSSI values. For assigning real-time observed RSSI vectors to different zones, first a Kalman Filter is applied to smooth the RSSI vector and form its Gaussian model, which is then compared in distribution with learned GMMs based on Bhattacharyya distance (BD) and via a weighted K-Nearest Neighbor (K-NN) approach.","PeriodicalId":6710,"journal":{"name":"2019 IEEE SENSORS","volume":"147 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS43011.2019.8956950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A probabilistic Gaussian mixture model (GMM) of the Received Signal Strength Indicator (RSSI) is proposed to perform indoor localization via Bluetooth Low Energy (BLE) sensors. More specifically, to deal with the fact that RSSI-based solutions are prone to drastic fluctuations, GMMs are trained to more accurately represent the underlying distribution of the RSSI values. For assigning real-time observed RSSI vectors to different zones, first a Kalman Filter is applied to smooth the RSSI vector and form its Gaussian model, which is then compared in distribution with learned GMMs based on Bhattacharyya distance (BD) and via a weighted K-Nearest Neighbor (K-NN) approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高斯混合的蓝牙低能量传感器室内定位
提出了一种接收信号强度指示器(RSSI)的概率高斯混合模型(GMM),通过蓝牙低功耗(BLE)传感器进行室内定位。更具体地说,为了处理基于RSSI的解决方案容易出现剧烈波动的事实,gmm被训练成更准确地表示RSSI值的潜在分布。为了将实时观测到的RSSI向量分配到不同的区域,首先使用卡尔曼滤波对RSSI向量进行平滑并形成其高斯模型,然后基于Bhattacharyya距离(BD)和加权k -最近邻(K-NN)方法将其与学习到的GMMs进行分布比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of Legionella Species by Photogate-Type Optical Sensor A Nano-Watt Dual-Mode Address Detector for a Wi-Fi Enabled RF Wake-up Receiver Optical Feedback Interferometry imaging sensor for micrometric flow-patterns using continuous scanning DNN-based Outdoor NLOS Human Detection Using IEEE 802.11ac WLAN Signal Disconnect Switch Position Sensor Based on FBG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1