L. Rimella, S. Alderton, M. Sammarro, B. Rowlingson, D. Cocker, N. Feasey, P. Fearnhead, C. Jewell
{"title":"Inference on extended-spectrum beta-lactamase Escherichia coli and Klebsiella pneumoniae data through SMC2","authors":"L. Rimella, S. Alderton, M. Sammarro, B. Rowlingson, D. Cocker, N. Feasey, P. Fearnhead, C. Jewell","doi":"10.1093/jrsssc/qlad055","DOIUrl":null,"url":null,"abstract":"\n We propose a novel stochastic model for the spread of antimicrobial-resistant bacteria in a population, together with an efficient algorithm for fitting such a model to sample data. We introduce an individual-based model for the epidemic, with the state of the model determining which individuals are colonised by the bacteria. The transmission rate of the epidemic takes into account both individuals’ locations, individuals’ covariates, seasonality, and environmental effects. The state of our model is only partially observed, with data consisting of test results from individuals from a sample of households. Fitting our model to data is challenging due to the large state space of our model. We develop an efficient SMC2 algorithm to estimate parameters and compare models for the transmission rate. We implement this algorithm in a computationally efficient manner by using the scale invariance properties of the underlying epidemic model. Our motivating application focuses on the dynamics of community-acquired extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae, using data collected as part of the Drivers of Resistance in Uganda and Malawi project. We infer the parameters of the model and learn key epidemic quantities such as the effective reproduction number, spatial distribution of prevalence, household cluster dynamics, and seasonality.","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"5 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series C-Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlad055","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5
Abstract
We propose a novel stochastic model for the spread of antimicrobial-resistant bacteria in a population, together with an efficient algorithm for fitting such a model to sample data. We introduce an individual-based model for the epidemic, with the state of the model determining which individuals are colonised by the bacteria. The transmission rate of the epidemic takes into account both individuals’ locations, individuals’ covariates, seasonality, and environmental effects. The state of our model is only partially observed, with data consisting of test results from individuals from a sample of households. Fitting our model to data is challenging due to the large state space of our model. We develop an efficient SMC2 algorithm to estimate parameters and compare models for the transmission rate. We implement this algorithm in a computationally efficient manner by using the scale invariance properties of the underlying epidemic model. Our motivating application focuses on the dynamics of community-acquired extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae, using data collected as part of the Drivers of Resistance in Uganda and Malawi project. We infer the parameters of the model and learn key epidemic quantities such as the effective reproduction number, spatial distribution of prevalence, household cluster dynamics, and seasonality.
期刊介绍:
The Journal of the Royal Statistical Society, Series C (Applied Statistics) is a journal of international repute for statisticians both inside and outside the academic world. The journal is concerned with papers which deal with novel solutions to real life statistical problems by adapting or developing methodology, or by demonstrating the proper application of new or existing statistical methods to them. At their heart therefore the papers in the journal are motivated by examples and statistical data of all kinds. The subject-matter covers the whole range of inter-disciplinary fields, e.g. applications in agriculture, genetics, industry, medicine and the physical sciences, and papers on design issues (e.g. in relation to experiments, surveys or observational studies).
A deep understanding of statistical methodology is not necessary to appreciate the content. Although papers describing developments in statistical computing driven by practical examples are within its scope, the journal is not concerned with simply numerical illustrations or simulation studies. The emphasis of Series C is on case-studies of statistical analyses in practice.