Analysis of the {4-Nicotinamido-4-Oxo-2-Butenoic Acid's} Electrochemical Polymerization as an Anti-Corrosion Layer on Stainless-Steel Alloys

Z. Al-Timimi, Zeina J. Tammemi
{"title":"Analysis of the {4-Nicotinamido-4-Oxo-2-Butenoic Acid's} Electrochemical Polymerization as an Anti-Corrosion Layer on Stainless-Steel Alloys","authors":"Z. Al-Timimi, Zeina J. Tammemi","doi":"10.30880/jsmpm.2022.02.02.001","DOIUrl":null,"url":null,"abstract":"The{Poly4-Nicotinamido-4-Oxo-2-Butenoic Acid's}, which serves as an anti-corrosion layer, was produced by electropolymerized the {4-Nicotinamido-4-Oxo-2-Butenoic Acid's} monomer onto 316-grade steel material. The produced polymer's structure and characteristics were evaluated using SEM, cyclic voltammetry, and other techniques. The corrosion resistance of stainless steel, both uncoated and coated in a corrosive medium of 0.2M HCl solution was examined using an electrochemical polarisation technique at temperatures ranging from (293-323) K. Nanomaterials such as nano zinc oxide and graphene were introduced to monomer solutions at various concentrations to increase the corrosion resistance of stainless-steel surfaces. According to the findings, adding nano components to a polymeric coating increased its protective effectiveness. Thermodynamic and kinetic activation properties were also investigated. The percentage of protection efficiencies and polarisation resistance values of the covering polymer decreased as the temperature rose. As the temperature climbed, the corrosion current density increased, although the corrosion potential decreased. In SEM and AFM experiments, the development of a protective coating on the surface of 316-grade stainless steel was demonstrated to protect it.","PeriodicalId":17134,"journal":{"name":"Journal of Sustainable Materials Processing and Management","volume":"06 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Materials Processing and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30880/jsmpm.2022.02.02.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The{Poly4-Nicotinamido-4-Oxo-2-Butenoic Acid's}, which serves as an anti-corrosion layer, was produced by electropolymerized the {4-Nicotinamido-4-Oxo-2-Butenoic Acid's} monomer onto 316-grade steel material. The produced polymer's structure and characteristics were evaluated using SEM, cyclic voltammetry, and other techniques. The corrosion resistance of stainless steel, both uncoated and coated in a corrosive medium of 0.2M HCl solution was examined using an electrochemical polarisation technique at temperatures ranging from (293-323) K. Nanomaterials such as nano zinc oxide and graphene were introduced to monomer solutions at various concentrations to increase the corrosion resistance of stainless-steel surfaces. According to the findings, adding nano components to a polymeric coating increased its protective effectiveness. Thermodynamic and kinetic activation properties were also investigated. The percentage of protection efficiencies and polarisation resistance values of the covering polymer decreased as the temperature rose. As the temperature climbed, the corrosion current density increased, although the corrosion potential decreased. In SEM and AFM experiments, the development of a protective coating on the surface of 316-grade stainless steel was demonstrated to protect it.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
{4-烟酰胺-4-氧-2-丁烯酸}电化学聚合作为不锈钢合金防腐层的分析
将{4-烟酰胺-4-氧-2-丁烯酸}单体电聚合到316级钢材料上,制备出具有防腐作用的{聚4-烟酰胺-4-氧-2-丁烯酸's}。利用扫描电镜、循环伏安法和其他技术对聚合物的结构和特性进行了评价。在(293-323)k的温度范围内,使用电化学极化技术检测了不锈钢在0.2M HCl溶液中未涂覆和涂覆的耐腐蚀性。纳米材料如纳米氧化锌和石墨烯被引入到不同浓度的单体溶液中,以增加不锈钢表面的耐腐蚀性。根据研究结果,在聚合物涂层中加入纳米成分可以提高其防护效果。热力学和动力学活化性能也进行了研究。覆盖聚合物的保护效率百分比和极化电阻值随温度升高而降低。随着温度的升高,腐蚀电流密度增大,但腐蚀电位减小。在扫描电镜和原子力显微镜实验中,研究了在316级不锈钢表面建立保护涂层的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Boosting Photocatalytic Activity Using Vanadium Doped Titanium Oxide with Reduced Graphene Oxide (RGO)/Semiconductor Nanocomposites Experimental Investigation On Nanoparticles Suspended Liquid (NSL) As The Heat Transfer Fluid (HTF) For Solar Evacuated Tube Collector Degradation of Dichloromethane Containing Laboratory Wastewater Using Photoelectric Fenton Process Synthesis and Applications of Organotin(IV) Compounds: Mini Review Utilization of Oyster Shell Powder for Hydration and Mechanical Properties Improvement of Portland Cement Pastes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1