Whole Stand Variable Density Yield Equations for Oak-Gum-Cypress Bottomland Hardwood Forests

Suchana Aryal, T. McConnell, K. Poudel, A. Polinko
{"title":"Whole Stand Variable Density Yield Equations for Oak-Gum-Cypress Bottomland Hardwood Forests","authors":"Suchana Aryal, T. McConnell, K. Poudel, A. Polinko","doi":"10.1093/jofore/fvad013","DOIUrl":null,"url":null,"abstract":"\n Variable density yield equations were constructed using fuzzy linear regression for bottomland oak-gum-cypress forests along the US Gulf Coast and lower Mississippi River Delta region. The USDA Forest Service’s Forest Inventory and Analysis program provided plot data (n = 526). Predictors included stand age, growing stock basal area per acre, sweetgum site index (base age 50 years), and US Environmental Protection Agency ecoregion dummy variables located in Alabama, Arkansas, Louisiana, Mississippi, Tennessee, and Texas. Dependent variables were per acre growing stock cubic foot yield (GSV) and Doyle board foot sawlog yield (SLV). Plots averaged 58 years, 90 ft2/ac basal area, 79 ft site index, 2,556 ft3/ac GSV, and 11,183 Doyle bf/ac SLV. Adjusted R2 were 0.98 (GSV) and 0.77 (SLV). Basal area possessed fuzziness in the GSV model, whereas the SLV model’s intercept was fuzzy. Six ecoregions possessed fuzziness in each model, but these were not identical across models.\n Study Implications: Some forestry measures at the stand level can be inherently vague or not as crisp as their reported values may suggest. Fuzzy linear regression can help overcome these imprecisions. Basal area per acre, which depends on average tree size and stand density, was both fuzzy and the most critical predictor of growing stock volume. The study’s relevance for clientele in the region specifically includes inventorying and appraising lands of the oak-gum-cypress mix. Narrower yield prediction intervals permit focusing resources on minimizing other sources of error when setting a reservation price (for landowners) or formulating a bid price (for buyers).","PeriodicalId":23386,"journal":{"name":"Turkish Journal of Forestry","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Forestry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jofore/fvad013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Variable density yield equations were constructed using fuzzy linear regression for bottomland oak-gum-cypress forests along the US Gulf Coast and lower Mississippi River Delta region. The USDA Forest Service’s Forest Inventory and Analysis program provided plot data (n = 526). Predictors included stand age, growing stock basal area per acre, sweetgum site index (base age 50 years), and US Environmental Protection Agency ecoregion dummy variables located in Alabama, Arkansas, Louisiana, Mississippi, Tennessee, and Texas. Dependent variables were per acre growing stock cubic foot yield (GSV) and Doyle board foot sawlog yield (SLV). Plots averaged 58 years, 90 ft2/ac basal area, 79 ft site index, 2,556 ft3/ac GSV, and 11,183 Doyle bf/ac SLV. Adjusted R2 were 0.98 (GSV) and 0.77 (SLV). Basal area possessed fuzziness in the GSV model, whereas the SLV model’s intercept was fuzzy. Six ecoregions possessed fuzziness in each model, but these were not identical across models. Study Implications: Some forestry measures at the stand level can be inherently vague or not as crisp as their reported values may suggest. Fuzzy linear regression can help overcome these imprecisions. Basal area per acre, which depends on average tree size and stand density, was both fuzzy and the most critical predictor of growing stock volume. The study’s relevance for clientele in the region specifically includes inventorying and appraising lands of the oak-gum-cypress mix. Narrower yield prediction intervals permit focusing resources on minimizing other sources of error when setting a reservation price (for landowners) or formulating a bid price (for buyers).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
橡胶柏洼地阔叶林全林分变密度产量方程
采用模糊线性回归方法,对美国墨西哥湾沿岸和密西西比河三角洲下游地区的滩涂橡胶林建立了变密度产量方程。美国农业部林业局的森林清查和分析项目提供了地块数据(n = 526)。预测因子包括林龄、每英亩蓄积量基础面积、甘树龄指数(基础年龄50年)和美国环境保护局位于阿拉巴马州、阿肯色州、路易斯安那州、密西西比州、田纳西州和德克萨斯州的生态区域虚拟变量。因变量为每英亩蓄积物立方英尺产量(GSV)和多伊尔板尺锯材产量(SLV)。地块平均58年,基础面积90平方英尺/平方英尺,场地指数79英尺,GSV 2,556平方英尺/平方英尺,Doyle bf/ac SLV 11,183英尺。校正后的R2分别为0.98 (GSV)和0.77 (SLV)。GSV模型的基底面积具有模糊性,而SLV模型的截距具有模糊性。6个生态区域在每个模型中都具有模糊性,但这些模糊性在不同的模型中并不相同。研究意义:在林分水平上的一些林业措施可能本质上是模糊的,或者不像它们的报告值所显示的那样清晰。模糊线性回归可以帮助克服这些不精确性。每英亩基础面积取决于平均树木大小和林分密度,这是模糊的,也是最关键的蓄积量预测因子。该研究与该地区客户的相关性具体包括清点和评估橡树-口香糖-柏树混合的土地。较窄的产量预测间隔允许在设定保留价格(为土地所有者)或制定投标价格(为买家)时将资源集中在最小化其他错误来源上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Batı Karadeniz Bölgesi Kazdağı göknarı ormanlarında göknar ökseotu bulunma ve bulaşma durumu: Kökez Orman İşletme Şefliği örneği Hitit metinlerinde orman Almus yöresi doğal doğu kayını meşcerelerinin çap dağılımının Weibull dağılımı ile modellenmesi Türkiye’nin kuzeybatısındaki bir plantasyonda yerli ve egzotik çam türlerinin ibrelerinde görülen fungal endofitler Assessing Mid-rotation Loblolly Pine and Competing Vegetation Responses to Post-thin Fertilization and Herbicide Application in the Southeastern United States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1