Experimental investigation of flow-induced sound of kite lines

IF 1 3区 物理与天体物理 Q4 ACOUSTICS Acta Acustica Pub Date : 2023-01-01 DOI:10.1051/aacus/2023027
Lukas Saur, J. Riedel, S. Dunker, S. Becker
{"title":"Experimental investigation of flow-induced sound of kite lines","authors":"Lukas Saur, J. Riedel, S. Dunker, S. Becker","doi":"10.1051/aacus/2023027","DOIUrl":null,"url":null,"abstract":"In times of increasing importance of renewable energies, airborne wind energy (AWE) systems represent an emerging extension to conventional wind turbines. Many AWE systems use powerful kites to provide tether traction to mechanically unwind the tether, generating electricity on the ground. In addition to the traction tether, a large number of kite lines spanning the kite are moved through the air at high speed. This can produce a loud unpleasant whistling noise on the ground, which is due to a superposition of the aeolian tones of the many different lines. In the present work, differently structured kite lines were investigated in the aeroacoustic wind tunnel with respect to their sound radiation when they were exposed to a flow at up to 34 ms−1 resulting in Re ≦ 7300 and angles of attack (AOA) in the range of 90° ≧ AOA ≧ 45°. It was found that greater surface roughness increases sound radiation while line tension has negligible influence. By weaving a single-helix-shaped protrusion into the sheath of the kite line, the total radiated sound pressure level can be reduced by up to 9 dB. If the line itself has a helical contour, even a reduction of up to 11.5 dB is reachable. For decreasing AOA the noise suppression effect of helical surface protrusions and helical line shape is significantly reduced. The results provide initial guidelines on how to effectively reduce sound radiation from aircraft kites. Further investigations should consider the individual contributions of fluid and structural sounds to the total radiated sound of a flying kite.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"2 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/aacus/2023027","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In times of increasing importance of renewable energies, airborne wind energy (AWE) systems represent an emerging extension to conventional wind turbines. Many AWE systems use powerful kites to provide tether traction to mechanically unwind the tether, generating electricity on the ground. In addition to the traction tether, a large number of kite lines spanning the kite are moved through the air at high speed. This can produce a loud unpleasant whistling noise on the ground, which is due to a superposition of the aeolian tones of the many different lines. In the present work, differently structured kite lines were investigated in the aeroacoustic wind tunnel with respect to their sound radiation when they were exposed to a flow at up to 34 ms−1 resulting in Re ≦ 7300 and angles of attack (AOA) in the range of 90° ≧ AOA ≧ 45°. It was found that greater surface roughness increases sound radiation while line tension has negligible influence. By weaving a single-helix-shaped protrusion into the sheath of the kite line, the total radiated sound pressure level can be reduced by up to 9 dB. If the line itself has a helical contour, even a reduction of up to 11.5 dB is reachable. For decreasing AOA the noise suppression effect of helical surface protrusions and helical line shape is significantly reduced. The results provide initial guidelines on how to effectively reduce sound radiation from aircraft kites. Further investigations should consider the individual contributions of fluid and structural sounds to the total radiated sound of a flying kite.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风筝线流致声实验研究
在可再生能源日益重要的时代,机载风能(AWE)系统代表了传统风力涡轮机的新兴扩展。许多AWE系统使用强大的风筝来提供系绳牵引力,从而机械地松开系绳,在地面上发电。除了牵引系绳外,横跨风筝的大量风筝线在空中高速移动。这可以在地面上产生一种响亮的令人不快的呼啸声,这是由于许多不同线路的风吹音调的叠加。本文研究了不同结构的风筝线在空气声风洞中受34 ms−1气流影响时的声辐射,结果风筝线的Re≦7300,攻角在90°≧攻角≧45°范围内。结果表明,表面粗糙度越大声辐射越大,而线张力对声辐射的影响可以忽略不计。通过在风筝线的护套中编织一个单螺旋形的突出物,总辐射声压级可以降低高达9分贝。如果线路本身具有螺旋轮廓,甚至可以达到11.5 dB的降低。为了降低AOA,螺旋表面突起和螺旋线形的噪声抑制效果显著降低。研究结果为如何有效减少飞机风筝的声辐射提供了初步指导。进一步的研究应考虑流体声和结构声对风筝总辐射声的个别贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Acustica
Acta Acustica ACOUSTICS-
CiteScore
2.80
自引率
21.40%
发文量
0
审稿时长
12 weeks
期刊介绍: Acta Acustica, the Journal of the European Acoustics Association (EAA). After the publication of its Journal Acta Acustica from 1993 to 1995, the EAA published Acta Acustica united with Acustica from 1996 to 2019. From 2020, the EAA decided to publish a journal in full Open Access. See Article Processing charges. Acta Acustica reports on original scientific research in acoustics and on engineering applications. The journal considers review papers, scientific papers, technical and applied papers, short communications, letters to the editor. From time to time, special issues and review articles are also published. For book reviews or doctoral thesis abstracts, please contact the Editor in Chief.
期刊最新文献
Auralization based on multi-perspective ambisonic room impulse responses Amplitude-dependent modal coefficients accounting for localized nonlinear losses in a time-domain integration of woodwind model A direct-hybrid CFD/CAA method based on lattice Boltzmann and acoustic perturbation equations Acta Acustica: State of art and achievements after 3 years Impact of wearing a head-mounted display on localization accuracy of real sound sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1