Performance Analysis and Scaling Behavior of Ultra-Scaled III-V (InAs) HEMTs System with 2-D Tunneling Effects on Leakage Current

Mohammad Zeyad, S. Ahmed, Anup Pramanik, Md. Mustafizur Rahman, MD. Maruf, D. Ghosh
{"title":"Performance Analysis and Scaling Behavior of Ultra-Scaled III-V (InAs) HEMTs System with 2-D Tunneling Effects on Leakage Current","authors":"Mohammad Zeyad, S. Ahmed, Anup Pramanik, Md. Mustafizur Rahman, MD. Maruf, D. Ghosh","doi":"10.1109/TENSYMP50017.2020.9230705","DOIUrl":null,"url":null,"abstract":"In this paper, the performance of Indium Arsenide (InAs) High Electron Mobility Transistor (HEMT) of 20nm gate length (Lg) is investigated by reducing the insulating density to enhance gate control whereas increasing the gate's efficiency in suppressing gate leakage. The scaling behavior of ultra-scaled InAs HEMTs system is investigated employing a 2-dimensional (2D) real-space effective mass ballistic quantum transport simulator, MATLAB and OMEN_FET on the nanohub website. Moreover, C++, OMEN programming language and Graphical User Interface (GUI) back scripts modifications tool are used. OMEN_HFET employs a real-space effective mass 2-D Schrödinger-Poisson convergent thinker to investigate the transport properties of nanoscale transistors. The process of the simulation region is limited to the contact area of the gate and the source or the drain contact is shapely by two series resistance. The device simulator can be used to gain a deeper insight into electron transport and to design the device for best performance once scaled to the nanometer systems. The simulation shows the comparison between the simulated Id-Vgs and Ig-Vgs characteristics of 20nm to 50nm gate length of flat and curves gate contact shape for InAs HEMTs. Furthermore, characteristics of Id-Vgs, horizontal electron density, and electrostatic potential, electron density; conduction band minimum; conduction band minimum in the quantum domain; current density, etc are observed by the simulation tools with better performance of the InAs HEMT of 20nm gate length which fulfilled the aim of the work.","PeriodicalId":6721,"journal":{"name":"2020 IEEE Region 10 Symposium (TENSYMP)","volume":"1 1","pages":"48-51"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP50017.2020.9230705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the performance of Indium Arsenide (InAs) High Electron Mobility Transistor (HEMT) of 20nm gate length (Lg) is investigated by reducing the insulating density to enhance gate control whereas increasing the gate's efficiency in suppressing gate leakage. The scaling behavior of ultra-scaled InAs HEMTs system is investigated employing a 2-dimensional (2D) real-space effective mass ballistic quantum transport simulator, MATLAB and OMEN_FET on the nanohub website. Moreover, C++, OMEN programming language and Graphical User Interface (GUI) back scripts modifications tool are used. OMEN_HFET employs a real-space effective mass 2-D Schrödinger-Poisson convergent thinker to investigate the transport properties of nanoscale transistors. The process of the simulation region is limited to the contact area of the gate and the source or the drain contact is shapely by two series resistance. The device simulator can be used to gain a deeper insight into electron transport and to design the device for best performance once scaled to the nanometer systems. The simulation shows the comparison between the simulated Id-Vgs and Ig-Vgs characteristics of 20nm to 50nm gate length of flat and curves gate contact shape for InAs HEMTs. Furthermore, characteristics of Id-Vgs, horizontal electron density, and electrostatic potential, electron density; conduction band minimum; conduction band minimum in the quantum domain; current density, etc are observed by the simulation tools with better performance of the InAs HEMT of 20nm gate length which fulfilled the aim of the work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有二维隧道效应的超大尺寸III-V (InAs) HEMTs系统性能分析及标度行为
本文研究了20nm栅极长度(Lg)的砷化铟(InAs)高电子迁移率晶体管(HEMT)的性能,通过降低绝缘密度来增强栅极控制,同时提高栅极抑制栅极泄漏的效率。利用二维(2D)实空间有效质量弹道量子输运模拟器、MATLAB和nanohub网站上的OMEN_FET,研究了超尺度InAs HEMTs系统的标度行为。此外,还使用了c++、OMEN编程语言和图形用户界面(GUI)后台脚本修改工具。OMEN_HFET采用实空间有效质量二维Schrödinger-Poisson收敛思考者来研究纳米级晶体管的输运性质。模拟区域的过程被限制在栅极的接触区域内,源极或漏极接触由两个串联电阻形成。该器件模拟器可用于更深入地了解电子传输,并设计出具有最佳性能的器件,一旦扩展到纳米系统。仿真比较了InAs hemt在20nm ~ 50nm栅极长度、平坦栅极接触形状和曲线栅极接触形状下的模拟Id-Vgs和Ig-Vgs的特性。此外,还研究了ids - vgs水平电子密度和静电势电子密度的特性;最小导带;量子域导带最小值;仿真结果表明,20nm栅极长度的InAs HEMT具有较好的性能,达到了研究的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Honorary Chair Multi-connectivity for URLLC: Performance Comparison of Different Architectures Efficiency Evaluation of P&O MPPT Technique used for Maximum Power Extraction from Solar Photovoltaic System Application of Internet of Things (IoT) to Develop a Smart Watering System for Cairns Parklands – A Case Study Analysis of Stability and Control of Helicopter Flight Dynamics Through Mathematical Modeling in Matlab
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1