{"title":"Upscaling of Solid-electrolyte Composite Intercalation Cathodes for Energy Storage Systems","authors":"M. Schmuck","doi":"10.1093/AMRX/ABX003","DOIUrl":null,"url":null,"abstract":"We investigate well-accepted formulations describing charge transport in composite cathodes of batteries. Our upscaling of carefully selected microscopic equations shows three main features: (i) a novel set of six equations equipped with nine effective parameters which systematically couple the microscale to the macroscale; (ii) the coupling of transport and flow equations allows to account for three scales: pore scale, Darcy scale, and macroscale; (iii) the upscaled equations take phase separation during Li-intercalation into account as well as specific particle configurations. The wide range of applications and interest in energy storage devices make these results a promising tool to study the influence of the microstructure on current-voltage characteristics and to optimize cathode designs.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"32 1","pages":"402-430"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/AMRX/ABX003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We investigate well-accepted formulations describing charge transport in composite cathodes of batteries. Our upscaling of carefully selected microscopic equations shows three main features: (i) a novel set of six equations equipped with nine effective parameters which systematically couple the microscale to the macroscale; (ii) the coupling of transport and flow equations allows to account for three scales: pore scale, Darcy scale, and macroscale; (iii) the upscaled equations take phase separation during Li-intercalation into account as well as specific particle configurations. The wide range of applications and interest in energy storage devices make these results a promising tool to study the influence of the microstructure on current-voltage characteristics and to optimize cathode designs.