Finite element thermal analysis of localized heating in AlGaN/GaN HEMT based sensors

Minmin Hou, Chi-Chun Pan, M. Asheghi, D. Senesky
{"title":"Finite element thermal analysis of localized heating in AlGaN/GaN HEMT based sensors","authors":"Minmin Hou, Chi-Chun Pan, M. Asheghi, D. Senesky","doi":"10.1109/ITHERM.2014.6892260","DOIUrl":null,"url":null,"abstract":"This paper reports the steady-state and transient temperature response of AlGaN/GaN high electron mobility transistor (HEMT) based structures. In this study, three localized heating schemes, namely, continuous self-heating, pulsed self-heating and heating with on-chip heaters are studied for sensor applications that require controlled heating profiles. Two scenarios were considered for the GaN sensor structure: 1) the silicon substrate under the AlGaN/GaN sensor is not removed, and 2) the silicon substrate is removed to form a suspended AlGaN/GaN diaphragm on which the sensor is located. The three heating schemes are analyzed by finite element thermal analysis, evaluated and compared. In addition, general guidelines for designing localized heating architectures for AlGaN/GaN HEMT based sensors are provided.","PeriodicalId":12453,"journal":{"name":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"19 1","pages":"25-30"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2014.6892260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper reports the steady-state and transient temperature response of AlGaN/GaN high electron mobility transistor (HEMT) based structures. In this study, three localized heating schemes, namely, continuous self-heating, pulsed self-heating and heating with on-chip heaters are studied for sensor applications that require controlled heating profiles. Two scenarios were considered for the GaN sensor structure: 1) the silicon substrate under the AlGaN/GaN sensor is not removed, and 2) the silicon substrate is removed to form a suspended AlGaN/GaN diaphragm on which the sensor is located. The three heating schemes are analyzed by finite element thermal analysis, evaluated and compared. In addition, general guidelines for designing localized heating architectures for AlGaN/GaN HEMT based sensors are provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于AlGaN/GaN HEMT传感器局部加热的有限元热分析
本文报道了基于AlGaN/GaN高电子迁移率晶体管(HEMT)结构的稳态和瞬态温度响应。在本研究中,研究了三种局部加热方案,即连续自加热、脉冲自加热和片上加热器加热,用于需要控制加热剖面的传感器应用。GaN传感器结构考虑了两种情况:1)没有移除AlGaN/GaN传感器下的硅衬底,2)移除硅衬底形成悬浮的AlGaN/GaN隔膜,传感器位于该膜片上。通过有限元热分析对三种加热方案进行了分析、评价和比较。此外,还提供了基于AlGaN/GaN HEMT传感器的局部加热架构设计的一般指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Material behavior of SAC305 under high strain rate at high temperature Phase-separation of wetting fluids using nanoporous alumina membranes and micro-glass capillaries Nature-inspired enhanced microscale heat transfer in macro geometry Transient thermal imaging characterization of a die attached optoelectronic device on silicon A model for the free (top) surface deformation of through-silicon vias
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1