L. Oksuz, A. Gulec, K. Ozaltin, K. Akkaya, G. Erkmen, A. Uygun
{"title":"Eletronical and optical characteristics of atmospheric pressure plasma enhanced chemical vapor deposition (APPECVD) system","authors":"L. Oksuz, A. Gulec, K. Ozaltin, K. Akkaya, G. Erkmen, A. Uygun","doi":"10.1109/PLASMA.2008.4590732","DOIUrl":null,"url":null,"abstract":"A dielectric barrier atmospheric pressure plasma discharge system with 13,56 MHz rf power supply and matching unit is built for plasma enhanced chemical vapor and composite deposition purposes. Plasma system is optimized for maximum power transfer by homemade matching circuit and uniform glow discharge is obtained with helium and argon flow. The optical, invasive electrical probe and noninvasive electrical characteristics are examined with and without monomer flow to the system. Time resolved ICCD pictures and electrical characteristics will be given with and without of monomers introduced to the system for polymerization.","PeriodicalId":6359,"journal":{"name":"2008 IEEE 35th International Conference on Plasma Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 35th International Conference on Plasma Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2008.4590732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A dielectric barrier atmospheric pressure plasma discharge system with 13,56 MHz rf power supply and matching unit is built for plasma enhanced chemical vapor and composite deposition purposes. Plasma system is optimized for maximum power transfer by homemade matching circuit and uniform glow discharge is obtained with helium and argon flow. The optical, invasive electrical probe and noninvasive electrical characteristics are examined with and without monomer flow to the system. Time resolved ICCD pictures and electrical characteristics will be given with and without of monomers introduced to the system for polymerization.