Functional Analysis of Arabidopsis thaliana Galactinol Synthase AtGolS2 in Response to Abiotic Stress

Yang Shen, Bowei Jia, Jinyu Wang, Xiaoxi Cai, Bingshuang Hu, Yan Wang, Yue‐Ying Chen, Mingzhe Sun, Sun Xiaoli
{"title":"Functional Analysis of Arabidopsis thaliana Galactinol Synthase AtGolS2 in Response to Abiotic Stress","authors":"Yang Shen, Bowei Jia, Jinyu Wang, Xiaoxi Cai, Bingshuang Hu, Yan Wang, Yue‐Ying Chen, Mingzhe Sun, Sun Xiaoli","doi":"10.5376/mpb.2020.11.0014","DOIUrl":null,"url":null,"abstract":"Soil salt-alkalization is one of the adverse factors limiting crop yields. Identification of key salt-alkaline tolerant genes is of great significance for molecular breeding of stress-resistant crops. In this study, a T-DNA insertion Arabidopsis mutant atgols2 showing higher sensitivity to bicarbonate salt-alkaline stress was screened out against NaHCO3 treatment. Further bioinformatic analysis revealed that the AtGolS2 gene encoded a galactinol synthase, which is a member of the glycosyltransferase family A superfamily. We predicted the protein interaction network of AtGolS2 via SMART online analysis, and found that these AtGolS2 interacting proteins were related to lipid metabolism, galactose biosynthesis and raffinose biosynthesis, and participated in abiotic stress responses. By using the online expression data, we showed that AtGolS2 expression responded to salt, osmotic, drought and ABA stress. PCR amplification by using the three primers method verified the homozygous T-DNA insertion in atgols2. Phenotypic assays further uncovered that atgols2 mutant was more sensitive to high salt, osmotic and ABA stresses than the wild type Arabidopsis. Taken together, results in this study revealed the positive function of AtGolS2 in bicarbonate salt-alkaline, high salt, osmotic and ABA stresses, which will facilitate further research regarding the function and molecular mechanism of the GolS family genes in stress responses.","PeriodicalId":32255,"journal":{"name":"Journal of Plant Molecular Breeding","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Molecular Breeding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5376/mpb.2020.11.0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Soil salt-alkalization is one of the adverse factors limiting crop yields. Identification of key salt-alkaline tolerant genes is of great significance for molecular breeding of stress-resistant crops. In this study, a T-DNA insertion Arabidopsis mutant atgols2 showing higher sensitivity to bicarbonate salt-alkaline stress was screened out against NaHCO3 treatment. Further bioinformatic analysis revealed that the AtGolS2 gene encoded a galactinol synthase, which is a member of the glycosyltransferase family A superfamily. We predicted the protein interaction network of AtGolS2 via SMART online analysis, and found that these AtGolS2 interacting proteins were related to lipid metabolism, galactose biosynthesis and raffinose biosynthesis, and participated in abiotic stress responses. By using the online expression data, we showed that AtGolS2 expression responded to salt, osmotic, drought and ABA stress. PCR amplification by using the three primers method verified the homozygous T-DNA insertion in atgols2. Phenotypic assays further uncovered that atgols2 mutant was more sensitive to high salt, osmotic and ABA stresses than the wild type Arabidopsis. Taken together, results in this study revealed the positive function of AtGolS2 in bicarbonate salt-alkaline, high salt, osmotic and ABA stresses, which will facilitate further research regarding the function and molecular mechanism of the GolS family genes in stress responses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拟南芥半乳糖醇合成酶AtGolS2在非生物胁迫下的功能分析
土壤盐碱化是制约作物产量的不利因素之一。关键耐盐碱基因的鉴定对抗逆性作物的分子育种具有重要意义。在这项研究中,筛选了一个T-DNA插入拟南芥突变体atgols2,该突变体对碳酸氢盐-碱胁迫具有较高的敏感性,可以抵抗NaHCO3处理。进一步的生物信息学分析表明,AtGolS2基因编码的半乳糖醇合成酶是糖基转移酶家族a超家族的成员。我们通过SMART在线分析预测了AtGolS2的蛋白相互作用网络,发现这些AtGolS2相互作用蛋白与脂质代谢、半乳糖生物合成和棉子糖生物合成有关,并参与非生物胁迫响应。通过在线表达数据,我们发现AtGolS2的表达对盐、渗透、干旱和ABA胁迫有响应。三引物PCR扩增证实了atgols2中T-DNA的纯合子插入。表型分析进一步发现atgols2突变体对高盐、渗透和ABA胁迫的敏感性高于野生型拟南芥。综上所述,本研究结果揭示了AtGolS2在碳酸氢盐-碱性、高盐、渗透和ABA胁迫下的积极作用,为进一步研究GolS家族基因在胁迫应答中的功能和分子机制提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
Molecular Marker Assisted Breeding of a New Japonica Hybrid Rice Identification of Gene Family in Pecan (Carya illinoinensis) and Its Expression in Graft Healing Efficient Induction of Papaya Embryogenic Callus and Plant Regeneration Effect of Sodium Nitroprusside on the Growth and Enzymes Related to Nitrogen Metabolism of Melon Seedlings under Low Temperature Stress Brief History of Plant Breeding Evolution from Primitive Selection to Domestication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1