Reservation-based Network-on-Chip Timing Models for Large-scale Architectural Simulation

J. Navaridas, Behram Khan, Salman Khan, P. Faraboschi, M. Luján
{"title":"Reservation-based Network-on-Chip Timing Models for Large-scale Architectural Simulation","authors":"J. Navaridas, Behram Khan, Salman Khan, P. Faraboschi, M. Luján","doi":"10.1109/NOCS.2012.18","DOIUrl":null,"url":null,"abstract":"Architectural simulation is an essential tool when it comes to evaluating the design of future many-core chips. However, reproducing all the components of such complex systems precisely would require unreasonable amounts of computing power. Hence, a trade off between accuracy and compute time is needed. For this reason most state-of-the-art tools do not have accurate models for the networks-on-chip, and rely on timing models that permit fast-simulation. Generally, these models are very simplistic and disregard contention for the use of network resources. As the number of nodes in the network-on-chip grows, fluctuations with contention and other parameters can considerably affect the accuracy of such models. In this paper we present and evaluate a collection of timing models based on a reservation scheme which consider the contention for the use of network resources. These models provide results quickly while being more accurate than simple no-contention approaches.","PeriodicalId":6333,"journal":{"name":"2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip","volume":"18 1","pages":"91-98"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOCS.2012.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Architectural simulation is an essential tool when it comes to evaluating the design of future many-core chips. However, reproducing all the components of such complex systems precisely would require unreasonable amounts of computing power. Hence, a trade off between accuracy and compute time is needed. For this reason most state-of-the-art tools do not have accurate models for the networks-on-chip, and rely on timing models that permit fast-simulation. Generally, these models are very simplistic and disregard contention for the use of network resources. As the number of nodes in the network-on-chip grows, fluctuations with contention and other parameters can considerably affect the accuracy of such models. In this paper we present and evaluate a collection of timing models based on a reservation scheme which consider the contention for the use of network resources. These models provide results quickly while being more accurate than simple no-contention approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于预约的大规模体系结构仿真芯片网络时序模型
架构仿真是评估未来多核芯片设计的重要工具。然而,精确地再现这种复杂系统的所有组件将需要不合理的计算能力。因此,需要在准确性和计算时间之间进行权衡。由于这个原因,大多数最先进的工具都没有精确的片上网络模型,而是依赖于允许快速仿真的时序模型。通常,这些模型非常简单,并且忽略了网络资源使用的争用。随着片上网络节点数量的增加,竞争和其他参数的波动会极大地影响这种模型的准确性。本文提出并评价了一组基于预留方案的时序模型,该方案考虑了网络资源的争用。这些模型可以快速提供结果,同时比简单的无争用方法更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytical Performance Modeling of Hierarchical Interconnect Fabrics Fine-Grained Bandwidth Adaptivity in Networks-on-Chip Using Bidirectional Channels Engineering a Bandwidth-Scalable Optical Layer for a 3D Multi-core Processor with Awareness of Layout Constraints An Optimal Control Approach to Power Management for Multi-Voltage and Frequency Islands Multiprocessor Platforms under Highly Variable Workloads A Statically Scheduled Time-Division-Multiplexed Network-on-Chip for Real-Time Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1