G. Romagnoli, J. Buytaert, R. Dumps, A. Francescon, O. A. de Aguiar Francisco, K. Howell, A. Mapelli, G. Nuessle, P. Petagna
{"title":"Micro-fluidic silicon cooling devices for particle tracking detectors","authors":"G. Romagnoli, J. Buytaert, R. Dumps, A. Francescon, O. A. de Aguiar Francisco, K. Howell, A. Mapelli, G. Nuessle, P. Petagna","doi":"10.1109/ITHERM.2014.6892344","DOIUrl":null,"url":null,"abstract":"In the last years the Detector Technology group (PH-DT) [1] of the CERN Physics Department in Geneva, Switzerland, has started the study of novel micro-fluidic cooling systems obtained through standard micro-fabrication processes that outperform traditional cooling approaches for the thermal management of silicon particle detectors. The fabrication of the cooling devices starts with the etching of the microchannels in a silicon wafer; the channels are then closed with another silicon wafer through a direct bonding process. The devices are then interfaced to the front-end electronics of the detector via a thin adhesive layer. Silicon cooling devices with thickness of the order of few hundred microns guarantee the desired minimization of material in front of the tracking sensors and eliminate mechanical stresses due to the mismatch of Coefficient of Thermal Expansion (CTE) between the sensor and its related electronics. Combining the versatility of standard micro-fabrication processes with the high thermal efficiency typical of micro-fluidics, it is possible to produce effective thermal management devices that are well adapted to very different detector configurations.","PeriodicalId":12453,"journal":{"name":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"40 1","pages":"658-665"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2014.6892344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the last years the Detector Technology group (PH-DT) [1] of the CERN Physics Department in Geneva, Switzerland, has started the study of novel micro-fluidic cooling systems obtained through standard micro-fabrication processes that outperform traditional cooling approaches for the thermal management of silicon particle detectors. The fabrication of the cooling devices starts with the etching of the microchannels in a silicon wafer; the channels are then closed with another silicon wafer through a direct bonding process. The devices are then interfaced to the front-end electronics of the detector via a thin adhesive layer. Silicon cooling devices with thickness of the order of few hundred microns guarantee the desired minimization of material in front of the tracking sensors and eliminate mechanical stresses due to the mismatch of Coefficient of Thermal Expansion (CTE) between the sensor and its related electronics. Combining the versatility of standard micro-fabrication processes with the high thermal efficiency typical of micro-fluidics, it is possible to produce effective thermal management devices that are well adapted to very different detector configurations.