On the Comparison of Several Goodness of Fit tests under Simple Random Sampling and Ranked Set Sampling

F. A. Shahabuddin, K. Ibrahim, A. Jemain
{"title":"On the Comparison of Several Goodness of Fit tests under Simple Random Sampling and Ranked Set Sampling","authors":"F. A. Shahabuddin, K. Ibrahim, A. Jemain","doi":"10.5281/ZENODO.1072455","DOIUrl":null,"url":null,"abstract":"Many works have been carried out to compare the\nefficiency of several goodness of fit procedures for identifying\nwhether or not a particular distribution could adequately explain a\ndata set. In this paper a study is conducted to investigate the power\nof several goodness of fit tests such as Kolmogorov Smirnov (KS),\nAnderson-Darling(AD), Cramer- von- Mises (CV) and a proposed\nmodification of Kolmogorov-Smirnov goodness of fit test which\nincorporates a variance stabilizing transformation (FKS). The\nperformances of these selected tests are studied under simple\nrandom sampling (SRS) and Ranked Set Sampling (RSS). This\nstudy shows that, in general, the Anderson-Darling (AD) test\nperforms better than other GOF tests. However, there are some\ncases where the proposed test can perform as equally good as the\nAD test.","PeriodicalId":23764,"journal":{"name":"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering","volume":"9 1","pages":"406-409"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.1072455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Many works have been carried out to compare the efficiency of several goodness of fit procedures for identifying whether or not a particular distribution could adequately explain a data set. In this paper a study is conducted to investigate the power of several goodness of fit tests such as Kolmogorov Smirnov (KS), Anderson-Darling(AD), Cramer- von- Mises (CV) and a proposed modification of Kolmogorov-Smirnov goodness of fit test which incorporates a variance stabilizing transformation (FKS). The performances of these selected tests are studied under simple random sampling (SRS) and Ranked Set Sampling (RSS). This study shows that, in general, the Anderson-Darling (AD) test performs better than other GOF tests. However, there are some cases where the proposed test can perform as equally good as the AD test.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简单随机抽样和排序集抽样下几种拟合优度检验的比较
许多工作已经开展,以比较几种拟合优度程序的效率,以确定一个特定的分布是否可以充分解释数据集。本文研究了Kolmogorov-Smirnov (KS)、Anderson-Darling(AD)、Cramer- von- Mises (CV)等几种拟合优度检验的有效性,并提出了一种包含方差稳定变换的Kolmogorov-Smirnov拟合优度检验的修正方法。在简单随机抽样(SRS)和排序集抽样(RSS)下研究了这些选择的测试的性能。本研究表明,在一般情况下,安德森-达林(AD)测试表现优于其他GOF测试。然而,在某些情况下,建议的测试可以执行得和头部测试一样好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deployment of Beyond 4G Wireless Communication Networks with Carrier Aggregation Evaluation of Colour Perception in Different Correlated Colour Temperature of LED Lighting Drugstore Control System Design and Realization Based on Programmable Logic Controller (PLC) Moment Estimators of the Parameters of Zero-One Inflated Negative Binomial Distribution An Implicit Methodology for the Numerical Modeling of Locally Inextensible Membranes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1