Sergio Garrido, S. Borysov, Jeppe Rich, F. Pereira
{"title":"Estimating causal effects with the neural autoregressive density estimator","authors":"Sergio Garrido, S. Borysov, Jeppe Rich, F. Pereira","doi":"10.1515/jci-2020-0007","DOIUrl":null,"url":null,"abstract":"Abstract The estimation of causal effects is fundamental in situations where the underlying system will be subject to active interventions. Part of building a causal inference engine is defining how variables relate to each other, that is, defining the functional relationship between variables entailed by the graph conditional dependencies. In this article, we deviate from the common assumption of linear relationships in causal models by making use of neural autoregressive density estimators and use them to estimate causal effects within Pearl’s do-calculus framework. Using synthetic data, we show that the approach can retrieve causal effects from non-linear systems without explicitly modeling the interactions between the variables and include confidence bands using the non-parametric bootstrap. We also explore scenarios that deviate from the ideal causal effect estimation setting such as poor data support or unobserved confounders.","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"2 1","pages":"211 - 228"},"PeriodicalIF":1.7000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jci-2020-0007","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract The estimation of causal effects is fundamental in situations where the underlying system will be subject to active interventions. Part of building a causal inference engine is defining how variables relate to each other, that is, defining the functional relationship between variables entailed by the graph conditional dependencies. In this article, we deviate from the common assumption of linear relationships in causal models by making use of neural autoregressive density estimators and use them to estimate causal effects within Pearl’s do-calculus framework. Using synthetic data, we show that the approach can retrieve causal effects from non-linear systems without explicitly modeling the interactions between the variables and include confidence bands using the non-parametric bootstrap. We also explore scenarios that deviate from the ideal causal effect estimation setting such as poor data support or unobserved confounders.
期刊介绍:
Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.