Estimating causal effects with the neural autoregressive density estimator

IF 1.7 4区 医学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Causal Inference Pub Date : 2020-08-17 DOI:10.1515/jci-2020-0007
Sergio Garrido, S. Borysov, Jeppe Rich, F. Pereira
{"title":"Estimating causal effects with the neural autoregressive density estimator","authors":"Sergio Garrido, S. Borysov, Jeppe Rich, F. Pereira","doi":"10.1515/jci-2020-0007","DOIUrl":null,"url":null,"abstract":"Abstract The estimation of causal effects is fundamental in situations where the underlying system will be subject to active interventions. Part of building a causal inference engine is defining how variables relate to each other, that is, defining the functional relationship between variables entailed by the graph conditional dependencies. In this article, we deviate from the common assumption of linear relationships in causal models by making use of neural autoregressive density estimators and use them to estimate causal effects within Pearl’s do-calculus framework. Using synthetic data, we show that the approach can retrieve causal effects from non-linear systems without explicitly modeling the interactions between the variables and include confidence bands using the non-parametric bootstrap. We also explore scenarios that deviate from the ideal causal effect estimation setting such as poor data support or unobserved confounders.","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"2 1","pages":"211 - 228"},"PeriodicalIF":1.7000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jci-2020-0007","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract The estimation of causal effects is fundamental in situations where the underlying system will be subject to active interventions. Part of building a causal inference engine is defining how variables relate to each other, that is, defining the functional relationship between variables entailed by the graph conditional dependencies. In this article, we deviate from the common assumption of linear relationships in causal models by making use of neural autoregressive density estimators and use them to estimate causal effects within Pearl’s do-calculus framework. Using synthetic data, we show that the approach can retrieve causal effects from non-linear systems without explicitly modeling the interactions between the variables and include confidence bands using the non-parametric bootstrap. We also explore scenarios that deviate from the ideal causal effect estimation setting such as poor data support or unobserved confounders.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用神经自回归密度估计器估计因果效应
在基础系统将受到积极干预的情况下,因果效应的估计是基本的。构建因果推理引擎的一部分工作是定义变量如何相互关联,也就是说,定义由图条件依赖关系所包含的变量之间的函数关系。在本文中,我们通过使用神经自回归密度估计器来偏离因果模型中线性关系的常见假设,并使用它们来估计Pearl的do-calculus框架内的因果效应。使用合成数据,我们表明该方法可以从非线性系统中检索因果效应,而无需显式建模变量之间的相互作用,并使用非参数自举包括置信带。我们还探讨了偏离理想因果效应估计设置的情况,如数据支持不足或未观察到的混杂因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Causal Inference
Journal of Causal Inference Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
14.30%
发文量
15
审稿时长
86 weeks
期刊介绍: Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.
期刊最新文献
Evaluating Boolean relationships in Configurational Comparative Methods Comparison of open-source software for producing directed acyclic graphs. LINGUISTIC FEATURES AND PRESENTATION OF MATERIALS ON ENGLISH TEXTBOOK “WHEN ENGLISH RINGS A BELL” BASED ON BSNP Heterogeneous interventional effects with multiple mediators: Semiparametric and nonparametric approaches Attributable fraction and related measures: Conceptual relations in the counterfactual framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1