HIFIR: Hybrid Incomplete Factorization with Iterative Refinement for Preconditioning Ill-Conditioned and Singular Systems

Qiao Chen, X. Jiao
{"title":"HIFIR: Hybrid Incomplete Factorization with Iterative Refinement for Preconditioning Ill-Conditioned and Singular Systems","authors":"Qiao Chen, X. Jiao","doi":"10.1145/3536165","DOIUrl":null,"url":null,"abstract":"We introduce a software package called Hybrid Incomplete Factorization with Iterative Refinement (HIFIR) for preconditioning sparse, unsymmetric, ill-conditioned, and potentially singular systems. HIFIR computes a hybrid incomplete factorization (HIF), which combines multilevel incomplete LU factorization with a truncated, rank-revealing QR (RRQR) factorization on the final Schur complement. This novel hybridization is based on the new theory of ϵ-accurate approximate generalized inverse (AGI). It enables near-optimal preconditioners for consistent systems and enables flexible GMRES to solve inconsistent systems when coupled with iterative refinement. In this article, we focus on some practical algorithmic and software issues of HIFIR. In particular, we introduce a new inverse-based rook pivoting (IBRP) into ILU, which improves the robustness and the overall efficiency for some ill-conditioned systems by significantly reducing the size of the final Schur complement for some systems. We also describe the software design of HIFIR in terms of its efficient data structures for supporting rook pivoting in a multilevel setting, its template-based generic programming interfaces for mixed-precision real and complex values in C++, and its user-friendly high-level interfaces in MATLAB and Python. We demonstrate the effectiveness of HIFIR for ill-conditioned or singular systems arising from several applications, including the Helmholtz equation, linear elasticity, stationary incompressible Navier–Stokes (INS) equations, and time-dependent advection-diffusion equation.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"110 1","pages":"1 - 33"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3536165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce a software package called Hybrid Incomplete Factorization with Iterative Refinement (HIFIR) for preconditioning sparse, unsymmetric, ill-conditioned, and potentially singular systems. HIFIR computes a hybrid incomplete factorization (HIF), which combines multilevel incomplete LU factorization with a truncated, rank-revealing QR (RRQR) factorization on the final Schur complement. This novel hybridization is based on the new theory of ϵ-accurate approximate generalized inverse (AGI). It enables near-optimal preconditioners for consistent systems and enables flexible GMRES to solve inconsistent systems when coupled with iterative refinement. In this article, we focus on some practical algorithmic and software issues of HIFIR. In particular, we introduce a new inverse-based rook pivoting (IBRP) into ILU, which improves the robustness and the overall efficiency for some ill-conditioned systems by significantly reducing the size of the final Schur complement for some systems. We also describe the software design of HIFIR in terms of its efficient data structures for supporting rook pivoting in a multilevel setting, its template-based generic programming interfaces for mixed-precision real and complex values in C++, and its user-friendly high-level interfaces in MATLAB and Python. We demonstrate the effectiveness of HIFIR for ill-conditioned or singular systems arising from several applications, including the Helmholtz equation, linear elasticity, stationary incompressible Navier–Stokes (INS) equations, and time-dependent advection-diffusion equation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预处理病态奇异系统的混合不完全分解与迭代改进
我们介绍了一个软件包称为混合不完全分解迭代细化(HIFIR)预处理稀疏,不对称,病态,和潜在的奇异系统。HIFIR计算混合不完全分解(HIF),它将多级不完全LU分解与最终Schur补上的截断、显示秩的QR (RRQR)分解相结合。这种新的杂化是基于ϵ-accurate近似广义逆(AGI)的新理论。它为一致系统提供了近乎最佳的预调节器,并使灵活的GMRES能够在与迭代改进相结合时解决不一致的系统。在本文中,我们重点讨论了HIFIR的一些实际算法和软件问题。特别地,我们在ILU中引入了一种新的逆基车转(IBRP),通过显著减少一些系统的最终Schur补的大小,提高了一些病态系统的鲁棒性和整体效率。我们还描述了HIFIR的软件设计,包括其高效的数据结构,以支持多级设置中的车旋转,其基于模板的通用编程接口,用于混合精度的实数和复数值,以及其在MATLAB和Python中的用户友好的高级界面。我们通过几种应用,包括Helmholtz方程、线性弹性、平稳不可压缩Navier-Stokes (INS)方程和随时间变化的平流扩散方程,证明了HIFIR对病态或奇异系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Configurable Open-source Data Structure for Distributed Conforming Unstructured Homogeneous Meshes with GPU Support Algorithm 1027: NOMAD Version 4: Nonlinear Optimization with the MADS Algorithm Toward Accurate and Fast Summation Algorithm 1028: VTMOP: Solver for Blackbox Multiobjective Optimization Problems Parallel QR Factorization of Block Low-rank Matrices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1