Correlation Expert Tuning System for Performance Acceleration

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2022-11-28 DOI:10.1016/j.bdr.2022.100345
Yanfeng Chai , Jiake Ge , Qiang Zhang , Yunpeng Chai , Xin Wang , Qingpeng Zhang
{"title":"Correlation Expert Tuning System for Performance Acceleration","authors":"Yanfeng Chai ,&nbsp;Jiake Ge ,&nbsp;Qiang Zhang ,&nbsp;Yunpeng Chai ,&nbsp;Xin Wang ,&nbsp;Qingpeng Zhang","doi":"10.1016/j.bdr.2022.100345","DOIUrl":null,"url":null,"abstract":"<div><p>One configuration can not fit all workloads and diverse resources limitations in modern databases. Auto-tuning methods based on reinforcement learning (RL) normally depend on the exhaustive offline training process with a huge amount of performance measurements, which includes large inefficient knobs combinations under a trial-and-error method. The most time-consuming part of the process is not the RL network training but the performance measurements for acquiring the reward values of target goals like higher throughput or lower latency. In other words, the whole process nearly could be considered as a zero-knowledge method without any experience or rules to constrain it. So we propose a correlation expert tuning system (CXTuning) for acceleration, which contains a correlation knowledge model to remove unnecessary training costs and a multi-instance mechanism (MIM) to support fine-grained tuning for diverse workloads. The models define the importance and correlations among these configuration knobs for the user's specified target. But knobs-based optimization should not be the final destination for auto-tuning. Furthermore, we import an abstracted architectural optimization method into CXTuning as a part of the progressive expert knowledge tuning (PEKT) algorithm. Experiments show that CXTuning can effectively reduce the training time and achieve extra performance promotion compared with the state-of-the-art auto-tuning method.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214579622000399/pdfft?md5=959f53ff5a4e8dcd1c236afdbde633e4&pid=1-s2.0-S2214579622000399-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579622000399","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

One configuration can not fit all workloads and diverse resources limitations in modern databases. Auto-tuning methods based on reinforcement learning (RL) normally depend on the exhaustive offline training process with a huge amount of performance measurements, which includes large inefficient knobs combinations under a trial-and-error method. The most time-consuming part of the process is not the RL network training but the performance measurements for acquiring the reward values of target goals like higher throughput or lower latency. In other words, the whole process nearly could be considered as a zero-knowledge method without any experience or rules to constrain it. So we propose a correlation expert tuning system (CXTuning) for acceleration, which contains a correlation knowledge model to remove unnecessary training costs and a multi-instance mechanism (MIM) to support fine-grained tuning for diverse workloads. The models define the importance and correlations among these configuration knobs for the user's specified target. But knobs-based optimization should not be the final destination for auto-tuning. Furthermore, we import an abstracted architectural optimization method into CXTuning as a part of the progressive expert knowledge tuning (PEKT) algorithm. Experiments show that CXTuning can effectively reduce the training time and achieve extra performance promotion compared with the state-of-the-art auto-tuning method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
性能加速相关专家调谐系统
一种配置不能适应现代数据库中的所有工作负载和各种资源限制。基于强化学习(RL)的自动调优方法通常依赖于具有大量性能测量的穷举离线训练过程,其中包括在试错法下的大量低效旋钮组合。这个过程中最耗时的部分不是强化学习网络的训练,而是获得目标奖励值的性能测量,比如更高的吞吐量或更低的延迟。换句话说,整个过程几乎可以看作是一种没有任何经验和规则约束的零知识方法。因此,我们提出了一个用于加速的相关专家调优系统(CXTuning),该系统包含一个相关知识模型来消除不必要的训练成本,以及一个多实例机制(MIM)来支持针对不同工作负载的细粒度调优。这些模型定义了这些配置旋钮对于用户指定目标的重要性和相关性。但是基于旋钮的优化不应该是自动调优的最终目标。此外,我们将抽象的体系结构优化方法引入到CXTuning中,作为渐进专家知识调优(PEKT)算法的一部分。实验表明,与目前最先进的自动调优方法相比,CXTuning可以有效地减少训练时间,并获得额外的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1