Proposed Minimum Luminous Range for Existing Lighthouses in This Age of Global Navigation Satellite Systems by Using the Correlation between Light Intensity and Luminous Range
Ahmad Faizal Ahmad Fuad , Noor Apandi Osnin , Mohd Naim Fadzil , Mohd Zamani Ahmad
{"title":"Proposed Minimum Luminous Range for Existing Lighthouses in This Age of Global Navigation Satellite Systems by Using the Correlation between Light Intensity and Luminous Range","authors":"Ahmad Faizal Ahmad Fuad , Noor Apandi Osnin , Mohd Naim Fadzil , Mohd Zamani Ahmad","doi":"10.1016/j.enavi.2017.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>Long-range visual marine aids to navigation are not required for current marine navigational practices. Therefore, the objective of this study was to develop a minimum luminous range for major lighthouses that are still in existence to sustain the operation of the lighthouses in the future. Two steps were involved in the determination of the minimum luminous range, namely the modification of the existing geographical range formula, and the finding of a strong linear correlation between the light intensity and the luminous range with the lowest gradient possible in a graph. The application of the minimum luminous range would eliminate the loom of light beyond the geographical range of the lighthouse. This approach was applied to seven major lighthouses in Peninsular Malaysia, which resulted in a minimum luminous range of between 12<!--> <!-->nm to 14<!--> <!-->nm, which was a reduction from the existing range of 18<!--> <!-->nm to 25<!--> <!-->nm. The validation of the minimum luminous range was performed in two ways; using a Full Mission Ship Simulator (FMSS), and matching the proposed minimum luminous range with the lighting system available. The results of the validation by using the FMSS between the luminous range of 25<!--> <!-->nm and 14<!--> <!-->nm showed that the light could be sighted and identified at 58.7<!--> <!-->nm and 58.6<!--> <!-->nm, respectively, which was, therefore, not significant. The validation by matching with the lighting equipment available in the market showed that the eight-tier VLB-44, which has replaced the rotating lighting system in the US since 2008, was highly matched with the proposed minimum luminous range. This further validated the minimum luminous range. The minimum luminous range is sufficient for current navigational uses and may reduce the costs for procuring and maintaining lighting systems, and will be able to sustain the operations of lighthouses in this GNSS age.</p></div>","PeriodicalId":100696,"journal":{"name":"International Journal of e-Navigation and Maritime Economy","volume":"6 ","pages":"Pages 29-36"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.enavi.2017.05.004","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of e-Navigation and Maritime Economy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405535217300049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Long-range visual marine aids to navigation are not required for current marine navigational practices. Therefore, the objective of this study was to develop a minimum luminous range for major lighthouses that are still in existence to sustain the operation of the lighthouses in the future. Two steps were involved in the determination of the minimum luminous range, namely the modification of the existing geographical range formula, and the finding of a strong linear correlation between the light intensity and the luminous range with the lowest gradient possible in a graph. The application of the minimum luminous range would eliminate the loom of light beyond the geographical range of the lighthouse. This approach was applied to seven major lighthouses in Peninsular Malaysia, which resulted in a minimum luminous range of between 12 nm to 14 nm, which was a reduction from the existing range of 18 nm to 25 nm. The validation of the minimum luminous range was performed in two ways; using a Full Mission Ship Simulator (FMSS), and matching the proposed minimum luminous range with the lighting system available. The results of the validation by using the FMSS between the luminous range of 25 nm and 14 nm showed that the light could be sighted and identified at 58.7 nm and 58.6 nm, respectively, which was, therefore, not significant. The validation by matching with the lighting equipment available in the market showed that the eight-tier VLB-44, which has replaced the rotating lighting system in the US since 2008, was highly matched with the proposed minimum luminous range. This further validated the minimum luminous range. The minimum luminous range is sufficient for current navigational uses and may reduce the costs for procuring and maintaining lighting systems, and will be able to sustain the operations of lighthouses in this GNSS age.