Enhanced Light Emission from Type-II Red InGaN/GaNSb/GaN Quantum-Well Structures

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Advances in Condensed Matter Physics Pub Date : 2022-09-26 DOI:10.1155/2022/8993349
Seoung-Hwan Park, J. Shim, Dong‐Soo Shin
{"title":"Enhanced Light Emission from Type-II Red InGaN/GaNSb/GaN Quantum-Well Structures","authors":"Seoung-Hwan Park, J. Shim, Dong‐Soo Shin","doi":"10.1155/2022/8993349","DOIUrl":null,"url":null,"abstract":"Electronic and optical properties of type-II InGaN/GaNSb/GaN quantum-well (QW) structures are investigated by using the multiband effective mass theory for potential applications in red light-emitting diodes. The heavy-hole effective mass around the topmost valence band is not affected much by the insertion of the GaNSb layer, and the optical matrix elements are greatly increased by the inclusion of the GaNSb layer in the InGaN/GaN QW structure. As a result, the type-II InGaN/GaNSb/GaN QW structure shows a much larger emission peak than the conventional type-I QW structure owing to the decrease in spatial separation between electron and hole wavefunctions, in addition to the reduction of the effective well width. It is also observed that the In content in InGaN well can be significantly reduced for the type-II QW structure with a large Sb content, compared to that for the type-I QW structure.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/8993349","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Electronic and optical properties of type-II InGaN/GaNSb/GaN quantum-well (QW) structures are investigated by using the multiband effective mass theory for potential applications in red light-emitting diodes. The heavy-hole effective mass around the topmost valence band is not affected much by the insertion of the GaNSb layer, and the optical matrix elements are greatly increased by the inclusion of the GaNSb layer in the InGaN/GaN QW structure. As a result, the type-II InGaN/GaNSb/GaN QW structure shows a much larger emission peak than the conventional type-I QW structure owing to the decrease in spatial separation between electron and hole wavefunctions, in addition to the reduction of the effective well width. It is also observed that the In content in InGaN well can be significantly reduced for the type-II QW structure with a large Sb content, compared to that for the type-I QW structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ii型红色InGaN/GaNSb/GaN量子阱结构的增强光发射
利用多波段有效质量理论研究了ii型InGaN/GaNSb/GaN量子阱(QW)结构在红光发光二极管中的潜在应用。在InGaN/GaN QW结构中加入GaNSb层对最上层价带周围的重空穴有效质量影响不大,而在InGaN/GaN QW结构中加入GaNSb层则大大增加了光学矩阵元素。结果表明,ii型InGaN/GaNSb/GaN量子w结构的发射峰比常规i型量子w结构大得多,这主要是由于电子和空穴波函数之间的空间距离减小以及有效阱宽度的减小。还观察到Sb含量高的ii型QW结构比i型QW结构能显著降低InGaN井中的In含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Condensed Matter Physics
Advances in Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
2.30
自引率
0.00%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Advances in Condensed Matter Physics publishes articles on the experimental and theoretical study of the physics of materials in solid, liquid, amorphous, and exotic states. Papers consider the quantum, classical, and statistical mechanics of materials; their structure, dynamics, and phase transitions; and their magnetic, electronic, thermal, and optical properties. Submission of original research, and focused review articles, is welcomed from researchers from across the entire condensed matter physics community.
期刊最新文献
The Effect of Pressure Variations on the Electronic Structure, Phonon, and Superconducting Properties of Yttrium Hydrogen Selenide Compound Unlocking the Magnetic and Half-Metallic Properties of AMY2 (A = Cu, Ag; M = Sc, Ti, V, Cr, Mn, Fe; Y = S, Se) Compounds in Chalcopyrite Structure: An Ab Initio Study for Spintronics Applications The Optimal Doping Ratio of Fe2O3 for Enhancing the Electrochemical Stability of Zeolitic Imidazolate Framework-8 for Energy Storage Devices Computational Study of the Effect of the Size-Dependent Dielectric Functions of Gold Nanomaterials on Optical Properties Electron Transport Properties of Eu(Cu1 − xAgx)2Si2 (0 ≤ x ≤ 1): Initiation of Transition Eu2+ ↔ Eu2.41+ in the Intermediate Valence State
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1