Visually Navigating the RMS Titanic with SLAM Information Filters

R. Eustice, Hanumant Singh, J. Leonard, Matthew R. Walter, R. Ballard
{"title":"Visually Navigating the RMS Titanic with SLAM Information Filters","authors":"R. Eustice, Hanumant Singh, J. Leonard, Matthew R. Walter, R. Ballard","doi":"10.15607/RSS.2005.I.008","DOIUrl":null,"url":null,"abstract":"This paper describes a vision-based large-area simultaneous localization and mapping (SLAM) algorithm that respects the constraints of low-overlap imagery typical of underwater vehicles while exploiting the information associated with the inertial sensors that are routinely available on such platforms. We present a novel strategy for efficiently accessing and maintaining consistent covariance bounds within a SLAM information filter, greatly increasing the reliability of data association. The technique is based upon solving a sparse system of linear equations coupled with the application of constant-time Kalman updates. The method is shown to produce consistent covariance estimates suitable for robot planning and data association. Realworld results are presented for a vision-based 6 DOF SLAM implementation using data from a recent ROV survey of the wreck of the RMS Titanic.","PeriodicalId":87357,"journal":{"name":"Robotics science and systems : online proceedings","volume":"70 1","pages":"57-64"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"217","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics science and systems : online proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2005.I.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 217

Abstract

This paper describes a vision-based large-area simultaneous localization and mapping (SLAM) algorithm that respects the constraints of low-overlap imagery typical of underwater vehicles while exploiting the information associated with the inertial sensors that are routinely available on such platforms. We present a novel strategy for efficiently accessing and maintaining consistent covariance bounds within a SLAM information filter, greatly increasing the reliability of data association. The technique is based upon solving a sparse system of linear equations coupled with the application of constant-time Kalman updates. The method is shown to produce consistent covariance estimates suitable for robot planning and data association. Realworld results are presented for a vision-based 6 DOF SLAM implementation using data from a recent ROV survey of the wreck of the RMS Titanic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用SLAM信息过滤器直观地导航RMS泰坦尼克号
本文描述了一种基于视觉的大面积同步定位和测绘(SLAM)算法,该算法在利用此类平台上常规可用的惯性传感器相关信息的同时,尊重水下航行器典型的低重叠图像的约束。我们提出了一种在SLAM信息过滤器中有效访问和维护一致协方差边界的新策略,大大提高了数据关联的可靠性。该技术基于求解线性方程组的稀疏系统,并结合常时卡尔曼更新的应用。结果表明,该方法可以产生适合机器人规划和数据关联的一致协方差估计。本文介绍了基于视觉的6 DOF SLAM系统的实际应用结果,该系统使用了最近对泰坦尼克号残骸的ROV调查数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
期刊最新文献
Toward Certifiable Motion Planning for Medical Steerable Needles. Latent Belief Space Motion Planning under Cost, Dynamics, and Intent Uncertainty Efficient Parametric Multi-Fidelity Surface Mapping Learning of Sub-optimal Gait Controllers for Magnetic Walking Soft Millirobots. Toward Asymptotically-Optimal Inspection Planning via Efficient Near-Optimal Graph Search.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1