R. Eustice, Hanumant Singh, J. Leonard, Matthew R. Walter, R. Ballard
{"title":"Visually Navigating the RMS Titanic with SLAM Information Filters","authors":"R. Eustice, Hanumant Singh, J. Leonard, Matthew R. Walter, R. Ballard","doi":"10.15607/RSS.2005.I.008","DOIUrl":null,"url":null,"abstract":"This paper describes a vision-based large-area simultaneous localization and mapping (SLAM) algorithm that respects the constraints of low-overlap imagery typical of underwater vehicles while exploiting the information associated with the inertial sensors that are routinely available on such platforms. We present a novel strategy for efficiently accessing and maintaining consistent covariance bounds within a SLAM information filter, greatly increasing the reliability of data association. The technique is based upon solving a sparse system of linear equations coupled with the application of constant-time Kalman updates. The method is shown to produce consistent covariance estimates suitable for robot planning and data association. Realworld results are presented for a vision-based 6 DOF SLAM implementation using data from a recent ROV survey of the wreck of the RMS Titanic.","PeriodicalId":87357,"journal":{"name":"Robotics science and systems : online proceedings","volume":"70 1","pages":"57-64"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"217","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics science and systems : online proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2005.I.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 217
Abstract
This paper describes a vision-based large-area simultaneous localization and mapping (SLAM) algorithm that respects the constraints of low-overlap imagery typical of underwater vehicles while exploiting the information associated with the inertial sensors that are routinely available on such platforms. We present a novel strategy for efficiently accessing and maintaining consistent covariance bounds within a SLAM information filter, greatly increasing the reliability of data association. The technique is based upon solving a sparse system of linear equations coupled with the application of constant-time Kalman updates. The method is shown to produce consistent covariance estimates suitable for robot planning and data association. Realworld results are presented for a vision-based 6 DOF SLAM implementation using data from a recent ROV survey of the wreck of the RMS Titanic.