Effect of copper-graphite composite electrode on material removal rate and surface roughness in MONEL 400 during electrical discharge machining

Mustafa. H. Hadi, A. Ibrahim
{"title":"Effect of copper-graphite composite electrode on material removal rate and surface roughness in MONEL 400 during electrical discharge machining","authors":"Mustafa. H. Hadi, A. Ibrahim","doi":"10.30544/817","DOIUrl":null,"url":null,"abstract":"Electrical Discharge Machining (EDM) is one of the non-traditional machining processes commonly used for machining of hard to cut metals. Monel 400 is a nickel based superalloy used in various applications. The composite electrode is developed and applied to enhance the machining process by reducing the time of the process and the cost of the electrode manufacturing. The presented work is aimed to study the effect of copper, graphite, and copper-graphite composite electrodes with different parameters on the Material Removal Rate and Surface Roughness of Monel 400. Influences of discharge current (Ip), pulse on time (Ton), and pulse off time (Toff) have been investigated. Based on the Taguchi method, experiments were analyzed using ANOVA through Minitab 20. The results have manifested that compared to copper and graphite electrodes, the copper-graphite electrode achieved better values of material removal rate and surface roughness. The lowest value of surface roughness is 3.1413 μm as a result of the added graphite reinforcement particles.\n ","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30544/817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Electrical Discharge Machining (EDM) is one of the non-traditional machining processes commonly used for machining of hard to cut metals. Monel 400 is a nickel based superalloy used in various applications. The composite electrode is developed and applied to enhance the machining process by reducing the time of the process and the cost of the electrode manufacturing. The presented work is aimed to study the effect of copper, graphite, and copper-graphite composite electrodes with different parameters on the Material Removal Rate and Surface Roughness of Monel 400. Influences of discharge current (Ip), pulse on time (Ton), and pulse off time (Toff) have been investigated. Based on the Taguchi method, experiments were analyzed using ANOVA through Minitab 20. The results have manifested that compared to copper and graphite electrodes, the copper-graphite electrode achieved better values of material removal rate and surface roughness. The lowest value of surface roughness is 3.1413 μm as a result of the added graphite reinforcement particles.  
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜-石墨复合电极对电火花加工中MONEL 400材料去除率和表面粗糙度的影响
电火花加工(EDM)是一种用于加工难切削金属的非传统加工方法。蒙乃尔400是一种镍基高温合金,用于各种应用。开发和应用复合电极是为了通过减少加工时间和电极制造成本来提高加工工艺。研究了铜、石墨和不同参数的铜-石墨复合电极对蒙乃尔400材料去除率和表面粗糙度的影响。研究了放电电流(Ip)、脉冲接通时间(Ton)和脉冲断开时间(Toff)的影响。基于田口法,通过Minitab 20对实验进行方差分析。结果表明,与铜电极和石墨电极相比,铜-石墨电极具有更好的材料去除率和表面粗糙度。石墨增强颗粒的加入使表面粗糙度最小值为3.1413 μm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of Mechanical-Elastic Parameters of Reservoir Rocks with Respect to the Purpose of Permanent CO2 Storage Mechanical and Thermal Properties of Polyurethane-Palm Fronds Ash Composites Analysis of Friction stir processed surface quality of AA2098 aluminum alloy for aeronautical applications Review Of Grain Refinement Performance Of Aluminium Cast Alloys In Situ Production of B4C and FeV Enriched Composite Surface on Low Carbon Steel by Cast Sintering Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1