{"title":"Electrical properties of TiO TiOx bilayer prepared by atomic layer deposition at different temperatures","authors":"Takeya Mochizuki, K. Gotoh, Y. Kurokawa, N. Usami","doi":"10.1109/PVSC40753.2019.9198984","DOIUrl":null,"url":null,"abstract":"The conversion efficiency of crystalline silicon heterojunction solar cells is increased by carrier selective contacts (CSCs) thanks to the combination of conductive and passivating layers. In this work, we propose the titanium oxide (TiO TiOx) bilayer to consist of TiO TiOx layerlayers prepared at 100 and 150°C by atomic layer deposition ALD). The TiO TiOx bi layer shows higher electrical properties in comparison with a single TiO TiOx layer. The enhanced electrical properties are origin ated from high passivation performance and low contact resist resistivity of TiO TiOx layerlayers prepared at 150 and 100 °C, respectively respectively, suggesting modulation of the deposition temperature can improve the functionality of ALD ALD-materials.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"156 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC40753.2019.9198984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The conversion efficiency of crystalline silicon heterojunction solar cells is increased by carrier selective contacts (CSCs) thanks to the combination of conductive and passivating layers. In this work, we propose the titanium oxide (TiO TiOx) bilayer to consist of TiO TiOx layerlayers prepared at 100 and 150°C by atomic layer deposition ALD). The TiO TiOx bi layer shows higher electrical properties in comparison with a single TiO TiOx layer. The enhanced electrical properties are origin ated from high passivation performance and low contact resist resistivity of TiO TiOx layerlayers prepared at 150 and 100 °C, respectively respectively, suggesting modulation of the deposition temperature can improve the functionality of ALD ALD-materials.