Anomaly Detection using Network Metadata

IF 0.7 Q3 COMPUTER SCIENCE, THEORY & METHODS International Journal of Advanced Computer Science and Applications Pub Date : 2022-01-01 DOI:10.14569/ijacsa.2022.0130593
Khaled Mutmbak, Sultan N Alotaibi, Khalid Alharbi, Umar A. Albalawi, O. Younes
{"title":"Anomaly Detection using Network Metadata","authors":"Khaled Mutmbak, Sultan N Alotaibi, Khalid Alharbi, Umar A. Albalawi, O. Younes","doi":"10.14569/ijacsa.2022.0130593","DOIUrl":null,"url":null,"abstract":"—The proliferation of numerous network function today gave rise to the importance of network traffic classification against various cyber-attacks. Automatic training with a huge number of representative data necessitates the creation of a model for an efficient classifier. As a result, automatic categorization requires using training techniques capable of assigning classes to data objects based on the activities supplied to learn classes. Predefined classes allow for the detection of new items. However, the analysis and categorization of data activity in intrusion detection systems are vulnerable to a wide range of threats. Thus, New methods of analysis must be developed in order to establish an appropriate approach for monitoring circulating traffic in order to solve this problem. The major goal of this research is to develop and verify a heterogeneous traffic classifier that can classify the collected metadata of networks. In this study, a new model is proposed, which is based on machine learning technique, to increase the accuracy of prediction. Prior to the analysis stage, the gathered traffic is subjected to preprocessing. This paper aims to provide the mathematical validation of a novel machine learning classifier for heterogeneous traffic and anomaly detection.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"133 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2022.0130593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

—The proliferation of numerous network function today gave rise to the importance of network traffic classification against various cyber-attacks. Automatic training with a huge number of representative data necessitates the creation of a model for an efficient classifier. As a result, automatic categorization requires using training techniques capable of assigning classes to data objects based on the activities supplied to learn classes. Predefined classes allow for the detection of new items. However, the analysis and categorization of data activity in intrusion detection systems are vulnerable to a wide range of threats. Thus, New methods of analysis must be developed in order to establish an appropriate approach for monitoring circulating traffic in order to solve this problem. The major goal of this research is to develop and verify a heterogeneous traffic classifier that can classify the collected metadata of networks. In this study, a new model is proposed, which is based on machine learning technique, to increase the accuracy of prediction. Prior to the analysis stage, the gathered traffic is subjected to preprocessing. This paper aims to provide the mathematical validation of a novel machine learning classifier for heterogeneous traffic and anomaly detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用网络元数据进行异常检测
-当今众多网络功能的激增使得网络流量分类防范各种网络攻击的重要性日益凸显。使用大量代表性数据进行自动训练需要为高效分类器创建模型。因此,自动分类需要使用能够根据为学习类而提供的活动为数据对象分配类的训练技术。预定义的类允许检测新项目。然而,入侵检测系统中数据活动的分析和分类容易受到各种威胁。因此,为了解决这一问题,必须开发新的分析方法,以便建立一种适当的监测循环交通的方法。本研究的主要目标是开发和验证一个异构流量分类器,该分类器可以对收集的网络元数据进行分类。本研究提出了一种基于机器学习技术的新模型,以提高预测的准确性。在分析阶段之前,对收集到的流量进行预处理。本文旨在为异构流量和异常检测提供一种新的机器学习分类器的数学验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
22.20%
发文量
519
期刊介绍: IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications
期刊最新文献
Comparison of K-Nearest Neighbor, Naive Bayes Classifier, Decision Tree, and Logistic Regression in Classification of Non-Performing Financing Simulation of fire exposure behavior to building structural elements using LISA FEA V.8. An Exploration into Hybrid Agile Development Approach A Study on Sentiment Analysis Techniques of Twitter Data Handwriting Recognition using Artificial Intelligence Neural Network and Image Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1