Neural network model in digital prediction of geometric parameters for relative position of the aircraft engine parts

M. Bolotov, V. Pechenin, N. V. Ruzanov, D. Balyakin
{"title":"Neural network model in digital prediction of geometric parameters for relative position of the aircraft engine parts","authors":"M. Bolotov, V. Pechenin, N. V. Ruzanov, D. Balyakin","doi":"10.18287/1613-0073-2019-2416-87-94","DOIUrl":null,"url":null,"abstract":"The quality of aircraft and rocket engines depends primarily on the geometric accuracy of assembly units and parts. Mathematical models implemented in the form of computer models are used to predict quality indicators (in particular, assembly parameters). Direct modeling of the conjugation process using numerical conjugation and finite-element models of assemblies requires significant computational resources and is often accompanied by problems convergence of solutions. In order to solve the above problems, it is possible to use neural network models describing the main regularities of the pairing process based on the accumulated results. The work presents a neural network model for predicting assembly parameters of the parts based on the use of actual surfaces of the parts obtained as a result of mathematical modeling. Assembly on conical surfaces is considered. A convolutional neural network was used to predict assembly parameters.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2416-87-94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The quality of aircraft and rocket engines depends primarily on the geometric accuracy of assembly units and parts. Mathematical models implemented in the form of computer models are used to predict quality indicators (in particular, assembly parameters). Direct modeling of the conjugation process using numerical conjugation and finite-element models of assemblies requires significant computational resources and is often accompanied by problems convergence of solutions. In order to solve the above problems, it is possible to use neural network models describing the main regularities of the pairing process based on the accumulated results. The work presents a neural network model for predicting assembly parameters of the parts based on the use of actual surfaces of the parts obtained as a result of mathematical modeling. Assembly on conical surfaces is considered. A convolutional neural network was used to predict assembly parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
航空发动机零件相对位置几何参数数字预测中的神经网络模型
飞机和火箭发动机的质量主要取决于装配单元和部件的几何精度。以计算机模型形式实现的数学模型用于预测质量指标(特别是装配参数)。用数值共轭和装配体有限元模型直接模拟共轭过程需要大量的计算资源,并且常常伴随着解的收敛性问题。为了解决上述问题,可以利用基于累积结果的神经网络模型来描述配对过程的主要规律。本文提出了一种基于零件实际表面的神经网络模型,用于预测零件的装配参数。考虑了圆锥表面上的装配。采用卷积神经网络对装配参数进行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of optimal configurations of a convolutional neural network for the identification of objects in real-time Recognition of forest and shrub communities on the base of remotely sensed data supported by ground studies Selection of aggregated classifiers for the prediction of the state of technical objects Method for reconstructing the real coordinates of an object from its plane image Using Models of Parallel Specialized Processors to Solve the Problem of Signal Separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1