FuREAP: a Fuzzy–Rough Estimator of Algae Populations

Q Shen, A Chouchoulas
{"title":"FuREAP: a Fuzzy–Rough Estimator of Algae Populations","authors":"Q Shen,&nbsp;A Chouchoulas","doi":"10.1016/S0954-1810(00)00022-4","DOIUrl":null,"url":null,"abstract":"<div><p>Concern for environmental issues has increased in recent years. Waste production influences humanity's future. The alga, an ubiquitous single-celled plant, can thrive on industrial waste, to the detriment of water clarity and human activities. To avoid this, biologists need to isolate the chemical parameters of these rapid population fluctuations. This paper proposes a Fuzzy–Rough Estimator of Algae Populations (FuREAP), a hybrid system involving Fuzzy Set and Rough Set theories that estimates the size of algae populations given certain water characteristics. Through dimensionality reduction, FuREAP significantly reduces computer time and space requirements. Also, it decreases the cost of obtaining measurements and increases runtime efficiency, making the system more viable economically. By retaining only information required for the estimation task, FuREAP offers higher accuracy than conventional rule induction systems. Finally, FuREAP does not alter the domain semantics, making the distilled knowledge human-readable. The paper addresses the problem domain, architecture and modus operandi of FuREAP, and provides and discusses detailed experimental results.</p></div>","PeriodicalId":100123,"journal":{"name":"Artificial Intelligence in Engineering","volume":"15 1","pages":"Pages 13-24"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0954-1810(00)00022-4","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0954181000000224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Concern for environmental issues has increased in recent years. Waste production influences humanity's future. The alga, an ubiquitous single-celled plant, can thrive on industrial waste, to the detriment of water clarity and human activities. To avoid this, biologists need to isolate the chemical parameters of these rapid population fluctuations. This paper proposes a Fuzzy–Rough Estimator of Algae Populations (FuREAP), a hybrid system involving Fuzzy Set and Rough Set theories that estimates the size of algae populations given certain water characteristics. Through dimensionality reduction, FuREAP significantly reduces computer time and space requirements. Also, it decreases the cost of obtaining measurements and increases runtime efficiency, making the system more viable economically. By retaining only information required for the estimation task, FuREAP offers higher accuracy than conventional rule induction systems. Finally, FuREAP does not alter the domain semantics, making the distilled knowledge human-readable. The paper addresses the problem domain, architecture and modus operandi of FuREAP, and provides and discusses detailed experimental results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FuREAP:藻类种群的模糊粗略估计
近年来,人们越来越关注环境问题。废物的产生影响着人类的未来。藻类是一种无处不在的单细胞植物,它可以在工业废水中茁壮成长,对水的清晰度和人类活动造成损害。为了避免这种情况,生物学家需要分离出这些快速种群波动的化学参数。本文提出了一种基于模糊集理论和粗糙集理论的藻类种群模糊粗糙估计系统(FuREAP),用于估计给定一定水体特征的藻类种群规模。通过降维,FuREAP显著降低了计算机时间和空间要求。此外,它降低了获得测量的成本,提高了运行效率,使系统更具经济可行性。通过只保留估计任务所需的信息,FuREAP提供比传统规则归纳系统更高的精度。最后,FuREAP不改变领域语义,使提炼出来的知识易于人类阅读。本文阐述了FuREAP的问题域、结构和工作方式,并给出了详细的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Volume Contents Simulating behaviors of human situation awareness under high workloads Emergent synthesis of motion patterns for locomotion robots Synthesis and emergence — research overview Concept of self-reconfigurable modular robotic system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1