Robust differential expression testing for single-cell CRISPR screens at low multiplicity of infection.

Timothy Barry, Kaishu Mason, Kathryn Roeder, Eugene Katsevich
{"title":"Robust differential expression testing for single-cell CRISPR screens at low multiplicity of infection.","authors":"Timothy Barry, Kaishu Mason, Kathryn Roeder, Eugene Katsevich","doi":"10.1101/2023.05.15.540875","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell CRISPR screens (perturb-seq) link genetic perturbations to phenotypic changes in individual cells. The most fundamental task in perturb-seq analysis is to test for association between a perturbation and a count outcome, such as gene expression. We conduct the first-ever comprehensive benchmarking study of association testing methods for low multiplicity-of-infection (MOI) perturb-seq data, finding that existing methods produce excess false positives. We conduct an extensive empirical investigation of the data, identifying three core analysis challenges: sparsity, confounding, and model misspecification. Finally, we develop an association testing method - SCEPTRE low-MOI - that resolves these analysis challenges and demonstrates improved calibration and power.</p>","PeriodicalId":49658,"journal":{"name":"Progress of Theoretical Physics","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042176/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.05.15.540875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell CRISPR screens (perturb-seq) link genetic perturbations to phenotypic changes in individual cells. The most fundamental task in perturb-seq analysis is to test for association between a perturbation and a count outcome, such as gene expression. We conduct the first-ever comprehensive benchmarking study of association testing methods for low multiplicity-of-infection (MOI) perturb-seq data, finding that existing methods produce excess false positives. We conduct an extensive empirical investigation of the data, identifying three core analysis challenges: sparsity, confounding, and model misspecification. Finally, we develop an association testing method - SCEPTRE low-MOI - that resolves these analysis challenges and demonstrates improved calibration and power.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在低感染倍率条件下对单细胞 CRISPR 筛选进行稳健的差异表达测试。
单细胞 CRISPR 筛查(perturb-seq)将遗传扰动与单个细胞的表型变化联系起来。perturb-seq 分析中最基本的任务是测试扰动与基因表达等计数结果之间的关联。我们首次对低感染倍率(MOI)扰动-序列数据的关联测试方法进行了全面的基准研究,发现现有方法会产生过多的假阳性。我们对数据进行了广泛的实证调查,确定了三个核心分析难题:稀疏性、混杂性和模型规范错误。最后,我们开发了一种关联测试方法--SCEPTRE low-MOI--解决了这些分析难题,并展示了改进的校准和功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress of Theoretical Physics
Progress of Theoretical Physics 物理-物理:综合
自引率
0.00%
发文量
0
审稿时长
4-8 weeks
期刊最新文献
Heavy and Chronic Cannabis Addiction does not Impact Motor Function: A BOLD-fMRI Study. Robust differential expression testing for single-cell CRISPR screens at low multiplicity of infection. Analysis of the Correlation of the Lamina Papyracea-to-Midline Distance with the Location of Anterior Ethmoidal Artery and Keros Classification. The long road to bloom in conifers. Risks to the 340B Drug Pricing Program Related to Manufacturer Restrictions on Drug Availability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1