Efficient parameter estimation for multivariate accelerated failure time model via the quadratic inference functions method

IF 0.9 4区 数学 Q4 PHYSICS, MATHEMATICAL Random Matrices-Theory and Applications Pub Date : 2019-10-23 DOI:10.1142/S2010326319500138
L. Fu, Zhuoran Yang, Mingtao Zhao, Yan Zhou
{"title":"Efficient parameter estimation for multivariate accelerated failure time model via the quadratic inference functions method","authors":"L. Fu, Zhuoran Yang, Mingtao Zhao, Yan Zhou","doi":"10.1142/S2010326319500138","DOIUrl":null,"url":null,"abstract":"A popular approach, generalized estimating equations (GEE), has been applied to the multivariate accelerated failure time (AFT) model of the clustered and censored data. However, this method needs to estimate the correlation parameters and calculate the inverse of the correlation matrix. Meanwhile, the efficiency of the parameter estimators is low when the correlation structure is misspecified and/or the marginal distribution is heavy-tailed. This paper proposes using the quadratic inference functions (QIF) with a mixture correlation structure to estimate the coefficients in the multivariate AFT model, which can avoid estimating the correlation parameters and computing the inverse matrix of the correlation matrix. Moreover, the estimator derived from the QIF is consistent and asymptotically normal. Simulation studies indicate that the proposed method outperforms the method based on GEE when the marginal distribution has a heavy tail. Finally, the proposed method is used to analyze a real dataset for illustration.","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"2013 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326319500138","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A popular approach, generalized estimating equations (GEE), has been applied to the multivariate accelerated failure time (AFT) model of the clustered and censored data. However, this method needs to estimate the correlation parameters and calculate the inverse of the correlation matrix. Meanwhile, the efficiency of the parameter estimators is low when the correlation structure is misspecified and/or the marginal distribution is heavy-tailed. This paper proposes using the quadratic inference functions (QIF) with a mixture correlation structure to estimate the coefficients in the multivariate AFT model, which can avoid estimating the correlation parameters and computing the inverse matrix of the correlation matrix. Moreover, the estimator derived from the QIF is consistent and asymptotically normal. Simulation studies indicate that the proposed method outperforms the method based on GEE when the marginal distribution has a heavy tail. Finally, the proposed method is used to analyze a real dataset for illustration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二次推理函数的多变量加速失效时间模型的有效参数估计
一种流行的方法,广义估计方程(GEE),已被应用于聚类和截尾数据的多元加速失效时间(AFT)模型。但是,该方法需要估计相关参数并计算相关矩阵的逆。同时,当相关结构不明确或边缘分布重尾时,参数估计器的效率较低。本文提出了一种混合相关结构的二次推理函数(QIF)来估计多元AFT模型的系数,避免了估计相关参数和计算相关矩阵的逆矩阵。此外,由QIF导出的估计量是一致的和渐近正态的。仿真研究表明,在边缘分布有重尾的情况下,该方法的性能优于基于GEE的方法。最后,用该方法对一个真实数据集进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Random Matrices-Theory and Applications
Random Matrices-Theory and Applications Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
11.10%
发文量
29
期刊介绍: Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics. Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory. Special issues devoted to single topic of current interest will also be considered and published in this journal.
期刊最新文献
Factoring determinants and applications to number theory Dynamics of a rank-one multiplicative perturbation of a unitary matrix Monotonicity of the logarithmic energy for random matrices Eigenvalue distributions of high-dimensional matrix processes driven by fractional Brownian motion Characteristic polynomials of orthogonal and symplectic random matrices, Jacobi ensembles & L-functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1