Leveraging Satisfiability Modulo Theory Solvers for Verification of Neural Networks in Predictive Maintenance Applications

Inf. Comput. Pub Date : 2023-07-12 DOI:10.3390/info14070397
Dario Guidotti, L. Pandolfo, Luca Pulina
{"title":"Leveraging Satisfiability Modulo Theory Solvers for Verification of Neural Networks in Predictive Maintenance Applications","authors":"Dario Guidotti, L. Pandolfo, Luca Pulina","doi":"10.3390/info14070397","DOIUrl":null,"url":null,"abstract":"Interest in machine learning and neural networks has increased significantly in recent years. However, their applications are limited in safety-critical domains due to the lack of formal guarantees on their reliability and behavior. This paper shows recent advances in satisfiability modulo theory solvers used in the context of the verification of neural networks with piece-wise linear and transcendental activation functions. An experimental analysis is conducted using neural networks trained on a real-world predictive maintenance dataset. This study contributes to the research on enhancing the safety and reliability of neural networks through formal verification, enabling their deployment in safety-critical domains.","PeriodicalId":13622,"journal":{"name":"Inf. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14070397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Interest in machine learning and neural networks has increased significantly in recent years. However, their applications are limited in safety-critical domains due to the lack of formal guarantees on their reliability and behavior. This paper shows recent advances in satisfiability modulo theory solvers used in the context of the verification of neural networks with piece-wise linear and transcendental activation functions. An experimental analysis is conducted using neural networks trained on a real-world predictive maintenance dataset. This study contributes to the research on enhancing the safety and reliability of neural networks through formal verification, enabling their deployment in safety-critical domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用可满足模理论求解器验证预测性维护应用中的神经网络
近年来,人们对机器学习和神经网络的兴趣显著增加。然而,由于缺乏对其可靠性和行为的正式保证,它们的应用在安全关键领域受到限制。本文介绍了用于验证具有分段线性和超越激活函数的神经网络的可满足模理论解算器的最新进展。实验分析使用在现实世界预测性维护数据集上训练的神经网络进行。本研究有助于通过形式化验证提高神经网络的安全性和可靠性,使其能够在安全关键领域部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traceable Constant-Size Multi-authority Credentials Pspace-Completeness of the Temporal Logic of Sub-Intervals and Suffixes Employee Productivity Assessment Using Fuzzy Inference System Correction of Threshold Determination in Rapid-Guessing Behaviour Detection Combining Classifiers for Deep Learning Mask Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1