HASS AVOKADO YAPRAĞI: MİKRODALGA DESTEKLİ EKSTRAKSİYON PARAMETRELERİ, FENOLİK BİLEŞİKLER, ANTİOKSİDAN VE ANTİDİYABETİK AKTİVİTELERİN OPTİMİZASYONU

Nevriye Kurt, Ebru Aydin, Gülcan Özkan
{"title":"HASS AVOKADO YAPRAĞI: MİKRODALGA DESTEKLİ EKSTRAKSİYON PARAMETRELERİ, FENOLİK BİLEŞİKLER, ANTİOKSİDAN VE ANTİDİYABETİK AKTİVİTELERİN OPTİMİZASYONU","authors":"Nevriye Kurt, Ebru Aydin, Gülcan Özkan","doi":"10.15237/gida.gd23067","DOIUrl":null,"url":null,"abstract":"Avocado leaves, typically considered as pruning residues, possess a significant amount of bioactive compounds. This research aimed to optimize the extraction of phenolic compounds from Hass avocado leaves using microwave-assisted extraction (MAE) and response surface method (RSM). The extraction yield and total phenolic content (TPC) were maximized by determining the optimal process conditions, which were found to be 47°C for 5 minutes and a solid/solvent ratio of 1.13 g dry leaf/100 mL, respectively. The predicted values of all models were found to be statistically significant (p <0.001). The aqueous extracts' antidiabetic and antioxidant activities were 64.59% and 235.6 mg TE/100 g, respectively. The amount of TPC was 591.76 μg GAE/g extract, and chlorogenic acid was the main phenolic component. These results indicated that MAE proved efficient with low energy consumption, yielding phenolic-rich avocado leaf extracts, which possess high antioxidant and antidiabetic activities.","PeriodicalId":12625,"journal":{"name":"Gida the Journal of Food","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gida the Journal of Food","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15237/gida.gd23067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Avocado leaves, typically considered as pruning residues, possess a significant amount of bioactive compounds. This research aimed to optimize the extraction of phenolic compounds from Hass avocado leaves using microwave-assisted extraction (MAE) and response surface method (RSM). The extraction yield and total phenolic content (TPC) were maximized by determining the optimal process conditions, which were found to be 47°C for 5 minutes and a solid/solvent ratio of 1.13 g dry leaf/100 mL, respectively. The predicted values of all models were found to be statistically significant (p <0.001). The aqueous extracts' antidiabetic and antioxidant activities were 64.59% and 235.6 mg TE/100 g, respectively. The amount of TPC was 591.76 μg GAE/g extract, and chlorogenic acid was the main phenolic component. These results indicated that MAE proved efficient with low energy consumption, yielding phenolic-rich avocado leaf extracts, which possess high antioxidant and antidiabetic activities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
牛油果叶子,通常被认为是修剪残留物,拥有大量的生物活性化合物。采用微波辅助提取法(MAE)和响应面法(RSM)对牛油果叶中酚类化合物的提取工艺进行优化。最佳工艺条件为47℃、5 min、料液比为1.13 g干叶/100 mL,可获得最大提取率和总酚含量。所有模型的预测值均有统计学意义(p <0.001)。水提物的抗糖尿病和抗氧化活性分别为64.59%和235.6 mg TE/100 g。TPC含量为591.76 μg /g,绿原酸为主要酚类成分。这些结果表明,MAE效率高,能耗低,能得到富含酚类物质的牛油果叶提取物,具有较高的抗氧化和抗糖尿病活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PRODUCTION OF PLANT-BASED FIBER-BUTYRIC ACID ESTERS AND THEIR USE AS EMULSIFIER IN CAKE FORMULATION METAGENOMIC APPROACHES IN FOOD MICROBIOLOGY YUMUŞAK BEYAZ PEYNİR SALAMURASINDA KULLANILAN STABİLİZÖRLERİN PEYNİRLERİN AROMA PROFİLİ ÜZERİNE ETKİLERİ KATIK KEŞİ ÜRETİMİ İÇİN EN UYGUN KURUMADDE VE YAĞ ORANININ BELİRLENMESİ EVALUATION OF THE CHEMICAL AND FUNCTIONAL PROPERTIES OF POWDERS OF DIFFERENT RADISH (RAPHANUS SATIVUS) CULTIVARS AS A POTENTIAL FUNCTIONAL FOOD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1