{"title":"Launcher: A Shell-based Framework for Rapid Development of Parallel Parametric Studies","authors":"Lucas A. Wilson, John M. Fonner","doi":"10.1145/2616498.2616534","DOIUrl":null,"url":null,"abstract":"Petascale computing systems have enabled tremendous advances for traditional simulation and modeling algorithms that are built around parallel execution. Unfortunately, scientific domains using data-oriented or high-throughput paradigms have difficulty taking full advantage of these resources without custom software development. This paper describes our solution for rapidly developing parallel parametric studies using sequential or threaded tasks: The launcher. We detail how to get ensembles executing quickly through common job schedulers SGE and SLURM, and the various user-customizable options that the launcher provides. We illustrate the efficiency of or tool by presenting execution results at large scale (over 65,000 cores) for varying workloads, including a virtual screening workload with indeterminate runtimes using the drug docking software Autodock Vina.","PeriodicalId":93364,"journal":{"name":"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)","volume":"146 1","pages":"40:1-40:8"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2616498.2616534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Petascale computing systems have enabled tremendous advances for traditional simulation and modeling algorithms that are built around parallel execution. Unfortunately, scientific domains using data-oriented or high-throughput paradigms have difficulty taking full advantage of these resources without custom software development. This paper describes our solution for rapidly developing parallel parametric studies using sequential or threaded tasks: The launcher. We detail how to get ensembles executing quickly through common job schedulers SGE and SLURM, and the various user-customizable options that the launcher provides. We illustrate the efficiency of or tool by presenting execution results at large scale (over 65,000 cores) for varying workloads, including a virtual screening workload with indeterminate runtimes using the drug docking software Autodock Vina.