Flexible software profiling of GPU architectures

M. Stephenson, S. Hari, Yunsup Lee, Eiman Ebrahimi, Daniel R. Johnson, D. Nellans, Mike O'Connor, S. Keckler
{"title":"Flexible software profiling of GPU architectures","authors":"M. Stephenson, S. Hari, Yunsup Lee, Eiman Ebrahimi, Daniel R. Johnson, D. Nellans, Mike O'Connor, S. Keckler","doi":"10.1145/2749469.2750375","DOIUrl":null,"url":null,"abstract":"To aid application characterization and architecture design space exploration, researchers and engineers have developed a wide range of tools for CPUs, including simulators, profilers, and binary instrumentation tools. With the advent of GPU computing, GPU manufacturers have developed similar tools leveraging hardware profiling and debugging hooks. To date, these tools are largely limited by the fixed menu of options provided by the tool developer and do not offer the user the flexibility to observe or act on events not in the menu. This paper presents SASSI (NVIDIA assembly code “SASS” Instrumentor), a low-level assembly-language instrumentation tool for GPUs. Like CPU binary instrumentation tools, SASSI allows a user to specify instructions at which to inject user-provided instrumentation code. These facilities allow strategic placement of counters and code into GPU assembly code to collect user-directed, fine-grained statistics at hardware speeds. SASSI instrumentation is inherently parallel, leveraging the concurrency of the underlying hardware. In addition to the details of SASSI, this paper provides four case studies that show how SASSI can be used to characterize applications and explore the architecture design space along the dimensions of instruction control flow, memory systems, value similarity, and resilience.","PeriodicalId":6878,"journal":{"name":"2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA)","volume":"8 1","pages":"185-197"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"92","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2749469.2750375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 92

Abstract

To aid application characterization and architecture design space exploration, researchers and engineers have developed a wide range of tools for CPUs, including simulators, profilers, and binary instrumentation tools. With the advent of GPU computing, GPU manufacturers have developed similar tools leveraging hardware profiling and debugging hooks. To date, these tools are largely limited by the fixed menu of options provided by the tool developer and do not offer the user the flexibility to observe or act on events not in the menu. This paper presents SASSI (NVIDIA assembly code “SASS” Instrumentor), a low-level assembly-language instrumentation tool for GPUs. Like CPU binary instrumentation tools, SASSI allows a user to specify instructions at which to inject user-provided instrumentation code. These facilities allow strategic placement of counters and code into GPU assembly code to collect user-directed, fine-grained statistics at hardware speeds. SASSI instrumentation is inherently parallel, leveraging the concurrency of the underlying hardware. In addition to the details of SASSI, this paper provides four case studies that show how SASSI can be used to characterize applications and explore the architecture design space along the dimensions of instruction control flow, memory systems, value similarity, and resilience.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
灵活的软件分析GPU架构
为了帮助应用程序表征和架构设计空间探索,研究人员和工程师开发了广泛的cpu工具,包括模拟器,分析器和二进制仪器工具。随着GPU计算的出现,GPU制造商已经开发出利用硬件分析和调试挂钩的类似工具。到目前为止,这些工具在很大程度上受到工具开发人员提供的固定菜单选项的限制,并且不能为用户提供观察或操作菜单中没有的事件的灵活性。本文介绍了SASSI (NVIDIA汇编代码“SASS”Instrumentor),一个用于gpu的低级汇编语言检测工具。与CPU二进制检测工具类似,SASSI允许用户指定注入用户提供的检测代码的指令。这些工具允许在GPU汇编代码中策略性地放置计数器和代码,以硬件速度收集用户导向的细粒度统计信息。SASSI插装本身就是并行的,利用底层硬件的并发性。除了SASSI的细节之外,本文还提供了四个案例研究,展示了如何使用SASSI来描述应用程序,并沿着指令控制流、内存系统、值相似性和弹性的维度探索体系结构设计空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Redundant Memory Mappings for fast access to large memories Multiple Clone Row DRAM: A low latency and area optimized DRAM Manycore Network Interfaces for in-memory rack-scale computing Coherence protocol for transparent management of scratchpad memories in shared memory manycore architectures ShiDianNao: Shifting vision processing closer to the sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1