{"title":"A Hybrid Contact Model With Experimental Validation","authors":"Qians Liu, Jing Cheng, Delun Li, Qingqing Wei","doi":"10.1115/1.4050586","DOIUrl":null,"url":null,"abstract":"\n This brief paper emphasizes on the experimental study of a hybrid contact model combining a traditional physical-based contact model and a data-driven error model in order to provide a more accurate description of a contact dynamics phenomenon. The physical-based contact model is employed to describe the known contact physics of a complex contact case, while the data-driven error model, which is an artificial neural network model trained from experimental data using a machine learning technique, is used to represent the inherent unmodeled factors of the contact case. A bouncing ball experiment is designed and performed to validate the model. The hybrid contact model can duplicate experimental results well, which demonstrates the feasibility and accuracy of the presented approach.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"52 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4050586","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 3
Abstract
This brief paper emphasizes on the experimental study of a hybrid contact model combining a traditional physical-based contact model and a data-driven error model in order to provide a more accurate description of a contact dynamics phenomenon. The physical-based contact model is employed to describe the known contact physics of a complex contact case, while the data-driven error model, which is an artificial neural network model trained from experimental data using a machine learning technique, is used to represent the inherent unmodeled factors of the contact case. A bouncing ball experiment is designed and performed to validate the model. The hybrid contact model can duplicate experimental results well, which demonstrates the feasibility and accuracy of the presented approach.
期刊介绍:
The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.