SEGCloud: Semantic Segmentation of 3D Point Clouds

Lyne P. Tchapmi, C. Choy, Iro Armeni, JunYoung Gwak, S. Savarese
{"title":"SEGCloud: Semantic Segmentation of 3D Point Clouds","authors":"Lyne P. Tchapmi, C. Choy, Iro Armeni, JunYoung Gwak, S. Savarese","doi":"10.1109/3DV.2017.00067","DOIUrl":null,"url":null,"abstract":"3D semantic scene labeling is fundamental to agents operating in the real world. In particular, labeling raw 3D point sets from sensors provides fine-grained semantics. Recent works leverage the capabilities of Neural Networks (NNs), but are limited to coarse voxel predictions and do not explicitly enforce global consistency. We present SEGCloud, an end-to-end framework to obtain 3D point-level segmentation that combines the advantages of NNs, trilinear interpolation(TI) and fully connected Conditional Random Fields (FC-CRF). Coarse voxel predictions from a 3D Fully Convolutional NN are transferred back to the raw 3D points via trilinear interpolation. Then the FC-CRF enforces global consistency and provides fine-grained semantics on the points. We implement the latter as a differentiable Recurrent NN to allow joint optimization. We evaluate the framework on two indoor and two outdoor 3D datasets (NYU V2, S3DIS, KITTI, this http URL), and show performance comparable or superior to the state-of-the-art on all datasets.","PeriodicalId":91162,"journal":{"name":"Proceedings. International Conference on 3D Vision","volume":"43 1","pages":"537-547"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"628","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on 3D Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2017.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 628

Abstract

3D semantic scene labeling is fundamental to agents operating in the real world. In particular, labeling raw 3D point sets from sensors provides fine-grained semantics. Recent works leverage the capabilities of Neural Networks (NNs), but are limited to coarse voxel predictions and do not explicitly enforce global consistency. We present SEGCloud, an end-to-end framework to obtain 3D point-level segmentation that combines the advantages of NNs, trilinear interpolation(TI) and fully connected Conditional Random Fields (FC-CRF). Coarse voxel predictions from a 3D Fully Convolutional NN are transferred back to the raw 3D points via trilinear interpolation. Then the FC-CRF enforces global consistency and provides fine-grained semantics on the points. We implement the latter as a differentiable Recurrent NN to allow joint optimization. We evaluate the framework on two indoor and two outdoor 3D datasets (NYU V2, S3DIS, KITTI, this http URL), and show performance comparable or superior to the state-of-the-art on all datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SEGCloud: 3D点云的语义分割
三维语义场景标注是智能体在现实世界中操作的基础。特别是,标记来自传感器的原始3D点集提供了细粒度的语义。最近的工作利用了神经网络(nn)的能力,但仅限于粗体素预测,并且没有明确地强制全局一致性。我们提出了SEGCloud,这是一个端到端框架,用于获得三维点级分割,它结合了神经网络,三线性插值(TI)和完全连接条件随机场(FC-CRF)的优点。来自3D全卷积神经网络的粗体素预测通过三线性插值传递回原始3D点。然后FC-CRF强制全局一致性,并在点上提供细粒度语义。我们将后者作为一个可微的递归神经网络来实现联合优化。我们在两个室内和两个室外3D数据集(NYU V2, S3DIS, KITTI,此http URL)上评估了该框架,并在所有数据集上显示出与最先进的性能相当或优于最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the Program Chairs: 3DV 2022 Message from the 3DV 2020 Program Chairs Performance Evaluation of 3D Correspondence Grouping Algorithms SEGCloud: Semantic Segmentation of 3D Point Clouds GSLAM: Initialization-Robust Monocular Visual SLAM via Global Structure-from-Motion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1