CSL: A Large-scale Chinese Scientific Literature Dataset

Yudong Li, Yuqing Zhang, Zhe Zhao, Lin-cheng Shen, Weijie Liu, Weiquan Mao, Hui Zhang
{"title":"CSL: A Large-scale Chinese Scientific Literature Dataset","authors":"Yudong Li, Yuqing Zhang, Zhe Zhao, Lin-cheng Shen, Weijie Liu, Weiquan Mao, Hui Zhang","doi":"10.48550/arXiv.2209.05034","DOIUrl":null,"url":null,"abstract":"Scientific literature serves as a high-quality corpus, supporting a lot of Natural Language Processing (NLP) research. However, existing datasets are centered around the English language, which restricts the development of Chinese scientific NLP. In this work, we present CSL, a large-scale Chinese Scientific Literature dataset, which contains the titles, abstracts, keywords and academic fields of 396k papers. To our knowledge, CSL is the first scientific document dataset in Chinese. The CSL can serve as a Chinese corpus. Also, this semi-structured data is a natural annotation that can constitute many supervised NLP tasks. Based on CSL, we present a benchmark to evaluate the performance of models across scientific domain tasks, i.e., summarization, keyword generation and text classification. We analyze the behavior of existing text-to-text models on the evaluation tasks and reveal the challenges for Chinese scientific NLP tasks, which provides a valuable reference for future research. Data and code will be publicly available.","PeriodicalId":91381,"journal":{"name":"Proceedings of COLING. International Conference on Computational Linguistics","volume":"7 1","pages":"3917-3923"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of COLING. International Conference on Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.05034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Scientific literature serves as a high-quality corpus, supporting a lot of Natural Language Processing (NLP) research. However, existing datasets are centered around the English language, which restricts the development of Chinese scientific NLP. In this work, we present CSL, a large-scale Chinese Scientific Literature dataset, which contains the titles, abstracts, keywords and academic fields of 396k papers. To our knowledge, CSL is the first scientific document dataset in Chinese. The CSL can serve as a Chinese corpus. Also, this semi-structured data is a natural annotation that can constitute many supervised NLP tasks. Based on CSL, we present a benchmark to evaluate the performance of models across scientific domain tasks, i.e., summarization, keyword generation and text classification. We analyze the behavior of existing text-to-text models on the evaluation tasks and reveal the challenges for Chinese scientific NLP tasks, which provides a valuable reference for future research. Data and code will be publicly available.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CSL:大型中文科学文献数据集
科学文献是一个高质量的语料库,支持了许多自然语言处理(NLP)研究。然而,现有的数据集以英语为中心,制约了中国科学自然语言处理的发展。在本工作中,我们建立了一个大型中文科学文献数据集CSL,该数据集包含39.6万篇论文的标题、摘要、关键词和学术领域。据我们所知,CSL是第一个中文科学文献数据集。该语言库可以作为汉语语料库。此外,这种半结构化数据是一种自然注释,可以构成许多有监督的NLP任务。基于CSL,我们提出了一个评估模型跨科学领域任务(即摘要、关键字生成和文本分类)性能的基准。分析了现有文本到文本模型在评价任务上的行为,揭示了中国科学NLP任务面临的挑战,为未来的研究提供了有价值的参考。数据和代码将公开提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Hierarchical Reasoning Chains by Linking Discourse Units and Key Phrases for Reading Comprehension Event Causality Extraction with Event Argument Correlations BERT-Flow-VAE: A Weakly-supervised Model for Multi-Label Text Classification TestAug: A Framework for Augmenting Capability-based NLP Tests Multilingual Word Sense Disambiguation with Unified Sense Representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1