Youngcheol Chae, Jimin Cheon, Seung-hyun Lim, Dongmyung Lee, Minho Kwon, Kwi-sung Yoo, Wun-ki Jung, Dong-Hun Lee, S. Ham, G. Han
{"title":"A 2.1Mpixel 120frame/s CMOS image sensor with column-parallel ΔΣ ADC architecture","authors":"Youngcheol Chae, Jimin Cheon, Seung-hyun Lim, Dongmyung Lee, Minho Kwon, Kwi-sung Yoo, Wun-ki Jung, Dong-Hun Lee, S. Ham, G. Han","doi":"10.1109/ISSCC.2010.5433974","DOIUrl":null,"url":null,"abstract":"Over the last few years, the demands for high-density and high-speed imaging have increased drastically. Since CMOS image sensors have the advantages of low power consumption and easy system integration, they have become dominant over CCDs in the consumer market [1–4]. A column-parallel ADC architecture is the most widely used ADC in CMOS image sensors for high-speed and low-power operation [2–6]. The column-parallel architecture can be classified as: successive-approximation register (SAR) [2], cyclic [3], single-slope (SS) [4], and delta-sigma (ΔΣ) [5,6] ADCs. Although SAR ADCs have been utilized for high-speed imaging, such as UDTV, they require a DAC in a column, whose area is unacceptably large for consumer electronics with a fine pixel pitch. Cyclic ADCs have also been reported in high-speed imaging, but they have high power consumption and high noise levels. Since SS ADCs provide relatively high resolution with minimum area, they have been widely used in CMOS image sensors. However, SS ADCs require very fast clock signals leading to high power consumption in the case of high-speed imaging. Although ΔΣ ADCs have been investigated for low-noise imaging, they have only been applied for low-speed imaging with large pixel pitch because of the complexity of ΔΣ modulators and following decimation filters.","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":"24 1","pages":"394-395"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2010.5433974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101
Abstract
Over the last few years, the demands for high-density and high-speed imaging have increased drastically. Since CMOS image sensors have the advantages of low power consumption and easy system integration, they have become dominant over CCDs in the consumer market [1–4]. A column-parallel ADC architecture is the most widely used ADC in CMOS image sensors for high-speed and low-power operation [2–6]. The column-parallel architecture can be classified as: successive-approximation register (SAR) [2], cyclic [3], single-slope (SS) [4], and delta-sigma (ΔΣ) [5,6] ADCs. Although SAR ADCs have been utilized for high-speed imaging, such as UDTV, they require a DAC in a column, whose area is unacceptably large for consumer electronics with a fine pixel pitch. Cyclic ADCs have also been reported in high-speed imaging, but they have high power consumption and high noise levels. Since SS ADCs provide relatively high resolution with minimum area, they have been widely used in CMOS image sensors. However, SS ADCs require very fast clock signals leading to high power consumption in the case of high-speed imaging. Although ΔΣ ADCs have been investigated for low-noise imaging, they have only been applied for low-speed imaging with large pixel pitch because of the complexity of ΔΣ modulators and following decimation filters.