{"title":"Analysis of radar response from urban areas","authors":"B. Forster, C. Ticehurst, Y. Dong","doi":"10.1109/IGARSS.1997.615289","DOIUrl":null,"url":null,"abstract":"The output from regular mapping and monitoring of urban areas provides an important source of information for urban planners and decision makers. The use of remotely sensed data to provide this information has been successful in particular environments but has had only limited success in tropical zone countries where cloud and rain often restrict the useful acquisition of visible/infrared image data on a regular basis. In many cases, and particularly in east Asia, these are precisely the areas that most need the data. A number of researchers have examined the potential of using radar images to overcome these problems, because at the wavelengths used (X- to P-), radar is not affected by cloud or rain. Urban areas are a spatially complex mixture of both natural and built surfaces whose spectral and geometric properties are many and varied. Buildings for example, cause significant backscatter when irradiated by microwave radiation, which is dependent on wavelength, polarisation and incidence angle of the radar beam, and roughness, dielectric properties and size, shape and orientation of the buildings and their surface facets. To some extent all combinations of specular and diffuse backscatter are a function of the height and width of buildings, and thus give rise to the possibility of using backscatter as a measure of the bulk density of the built environment. Equations for backscattering mechanisms, often found in urban environments, are well known. These are for example, facets, point scatterers, dihedral and trihedral corner reflectors, cylinders and wedges. This paper examines the theoretical relationships between urban morphology and remote sensing response at radar wavelengths, provides some preliminary results on measures of urban classification using AirSAR quad polarised radar data from test sites over the city of Sydney, Australia, and proposes a solution to the problem of backscatter variation due to building orientation.","PeriodicalId":64877,"journal":{"name":"遥感信息","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1997-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感信息","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/IGARSS.1997.615289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The output from regular mapping and monitoring of urban areas provides an important source of information for urban planners and decision makers. The use of remotely sensed data to provide this information has been successful in particular environments but has had only limited success in tropical zone countries where cloud and rain often restrict the useful acquisition of visible/infrared image data on a regular basis. In many cases, and particularly in east Asia, these are precisely the areas that most need the data. A number of researchers have examined the potential of using radar images to overcome these problems, because at the wavelengths used (X- to P-), radar is not affected by cloud or rain. Urban areas are a spatially complex mixture of both natural and built surfaces whose spectral and geometric properties are many and varied. Buildings for example, cause significant backscatter when irradiated by microwave radiation, which is dependent on wavelength, polarisation and incidence angle of the radar beam, and roughness, dielectric properties and size, shape and orientation of the buildings and their surface facets. To some extent all combinations of specular and diffuse backscatter are a function of the height and width of buildings, and thus give rise to the possibility of using backscatter as a measure of the bulk density of the built environment. Equations for backscattering mechanisms, often found in urban environments, are well known. These are for example, facets, point scatterers, dihedral and trihedral corner reflectors, cylinders and wedges. This paper examines the theoretical relationships between urban morphology and remote sensing response at radar wavelengths, provides some preliminary results on measures of urban classification using AirSAR quad polarised radar data from test sites over the city of Sydney, Australia, and proposes a solution to the problem of backscatter variation due to building orientation.
期刊介绍:
Remote Sensing Information is a bimonthly academic journal supervised by the Ministry of Natural Resources of the People's Republic of China and sponsored by China Academy of Surveying and Mapping Science. Since its inception in 1986, it has been one of the authoritative journals in the field of remote sensing in China.In 2014, it was recognised as one of the first batch of national academic journals, and was awarded the honours of Core Journals of China Science Citation Database, Chinese Core Journals, and Core Journals of Science and Technology of China. The journal won the Excellence Award (First Prize) of the National Excellent Surveying, Mapping and Geographic Information Journal Award in 2011 and 2017 respectively.
Remote Sensing Information is dedicated to reporting the cutting-edge theoretical and applied results of remote sensing science and technology, promoting academic exchanges at home and abroad, and promoting the application of remote sensing science and technology and industrial development. The journal adheres to the principles of openness, fairness and professionalism, abides by the anonymous review system of peer experts, and has good social credibility. The main columns include Review, Theoretical Research, Innovative Applications, Special Reports, International News, Famous Experts' Forum, Geographic National Condition Monitoring, etc., covering various fields such as surveying and mapping, forestry, agriculture, geology, meteorology, ocean, environment, national defence and so on.
Remote Sensing Information aims to provide a high-level academic exchange platform for experts and scholars in the field of remote sensing at home and abroad, to enhance academic influence, and to play a role in promoting and supporting the protection of natural resources, green technology innovation, and the construction of ecological civilisation.