Disease mapping of biomarkers for breast cancer in Tehran using spatial joint model: A Bayesian perspective

T. Baghfalaki, M. Kamarehee, M. Ganjali, A. Shabbak, M. Khayamzadeh, M. Akbari
{"title":"Disease mapping of biomarkers for breast cancer in Tehran using spatial joint model: A Bayesian perspective","authors":"T. Baghfalaki, M. Kamarehee, M. Ganjali, A. Shabbak, M. Khayamzadeh, M. Akbari","doi":"10.1080/23737484.2021.1882354","DOIUrl":null,"url":null,"abstract":"Abstract Breast cancer is one of the most important medical concerns that women face today. There are some biomarkers for detection of this cancer. Modeling these biomarkers, finding important factors that are associated with them and estimating the spatial pattern in disease risk across the areal units by disease mapping are the main foci of many studies. In this article, three binary biomarkers (the presence of estrogen receptors, the presence of progesterone receptors, and the absence of human epidermal growth factor receptor-2) are considered simultaneously for disease mapping of breast cancer. The association of these three biomarkers and spatial effects on them are jointly considered by using a convolution model. The proposed approach is applied to disease mapping of biomarkers of breast cancer in Tehran.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"3 1","pages":"289 - 314"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2021.1882354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Breast cancer is one of the most important medical concerns that women face today. There are some biomarkers for detection of this cancer. Modeling these biomarkers, finding important factors that are associated with them and estimating the spatial pattern in disease risk across the areal units by disease mapping are the main foci of many studies. In this article, three binary biomarkers (the presence of estrogen receptors, the presence of progesterone receptors, and the absence of human epidermal growth factor receptor-2) are considered simultaneously for disease mapping of breast cancer. The association of these three biomarkers and spatial effects on them are jointly considered by using a convolution model. The proposed approach is applied to disease mapping of biomarkers of breast cancer in Tehran.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用空间联合模型绘制德黑兰乳腺癌生物标志物的疾病图谱:贝叶斯视角
乳腺癌是当今女性面临的最重要的医学问题之一。有一些生物标志物可以检测这种癌症。对这些生物标志物进行建模,发现与它们相关的重要因素,并通过疾病制图估计疾病风险的空间格局,是许多研究的主要焦点。在这篇文章中,三种二元生物标志物(雌激素受体的存在、孕激素受体的存在和人表皮生长因子受体-2的缺失)被同时考虑用于乳腺癌的疾病定位。这三种生物标志物的关联及其空间效应通过使用卷积模型共同考虑。提出的方法应用于德黑兰乳腺癌生物标志物的疾病制图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
期刊最新文献
The reciprocal elastic net Detection of influential observations in high-dimensional survival data Small area estimation of trends in household living standards in Uganda using a GMANOVA-MANOVA model and repeated surveys Applications of a new loss and cost-based process capability index to electronic industries A methodological framework for imputing missing spatial data at an aggregate level and guaranteeing data privacy: the AFFINITY method; implementation in the context of the official spatial Greek census data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1