{"title":"Prescription Based Recommender System for Diabetic Patients Using Efficient Map Reduce","authors":"Ritika Bateja, S. Dubey, A. Bhatt","doi":"10.4186/ej.2022.26.10.85","DOIUrl":null,"url":null,"abstract":". Healthcare sector has been deprived of leveraging knowledge gained through data insights, due to manual processes and legacy record-keeping methods. Outdated methods for maintaining healthcare records have not been proven sufficient for treating chronic diseases like diabetes. Data analysis methods such as Recommendation System (RS) can serve as a boon for treating diabetes. RS leverages predictive analysis and provides clinicians with information needed to determine the treatments to patients. Prescription-based Health Recommender System (HRS) is proposed in this paper which aids in recommending treatments by learning from the treatments prescribed to other patients diagnosed with diabetes. An Advanced Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering is also proposed to cluster the data for deriving recommendations by using winnowing algorithm as a similarity measure. A parallel processing of data is applied using map-reduce to increase the efficiency & scalability of clustering process for effective treatment of diabetes. This paper provides a good picture of how the Map Reduce can benefit in increasing the efficiency and scalability of the HRS using clustering.","PeriodicalId":32885,"journal":{"name":"AlKhawarizmi Engineering Journal","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AlKhawarizmi Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4186/ej.2022.26.10.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
. Healthcare sector has been deprived of leveraging knowledge gained through data insights, due to manual processes and legacy record-keeping methods. Outdated methods for maintaining healthcare records have not been proven sufficient for treating chronic diseases like diabetes. Data analysis methods such as Recommendation System (RS) can serve as a boon for treating diabetes. RS leverages predictive analysis and provides clinicians with information needed to determine the treatments to patients. Prescription-based Health Recommender System (HRS) is proposed in this paper which aids in recommending treatments by learning from the treatments prescribed to other patients diagnosed with diabetes. An Advanced Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering is also proposed to cluster the data for deriving recommendations by using winnowing algorithm as a similarity measure. A parallel processing of data is applied using map-reduce to increase the efficiency & scalability of clustering process for effective treatment of diabetes. This paper provides a good picture of how the Map Reduce can benefit in increasing the efficiency and scalability of the HRS using clustering.