K.V. Kumar, R. Reddy, Ganesh Babu Katam, Y. Pragathi, R.V.S Lakshmi, P. Ravikumar
{"title":"An Effect of Iridium Spark Plugs on SI Engine Performance and Exhaust Emissions by using Plastic Oil Petrol Blends","authors":"K.V. Kumar, R. Reddy, Ganesh Babu Katam, Y. Pragathi, R.V.S Lakshmi, P. Ravikumar","doi":"10.15282/ijame.19.1.2022.05.0724","DOIUrl":null,"url":null,"abstract":"The increasing population density of automobiles leads to demands more fuel consumption that leads to reducing the availability and also raises the cost. Therefore, it is necessary to search for an alternate fuel, which can effectively replace the conventional fuel without affecting the engine design. The objective of this paper is to discuss the influence of waste plastic oil blends from 0% to 25% at four different ratios fuelled in a multi-cylinder Maruti 800 SI engine by using two types of sparkplugs; the conventional type spark plug that consists of a centre electrode with a copper core, and a plug with an iridium based electrode tip. From the outcomes of the experiments, the engine efficiency is improved, and emissions are controlled by using iridium spark plugs compared to the conventional type spark plugs. At a higher blend of 25%, PPO performance and emissions are analysed and presented in this research. The oxides of nitrogen emissions of engine fuelled with 25% of the plastic oil blend are 13% reduced, and 4.5% brake thermal efficiency are enhanced by using iridium spark plugs compared to 25% of plastic oil by using the conventional type of spark plugs at full load conditions.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"44 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.1.2022.05.0724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing population density of automobiles leads to demands more fuel consumption that leads to reducing the availability and also raises the cost. Therefore, it is necessary to search for an alternate fuel, which can effectively replace the conventional fuel without affecting the engine design. The objective of this paper is to discuss the influence of waste plastic oil blends from 0% to 25% at four different ratios fuelled in a multi-cylinder Maruti 800 SI engine by using two types of sparkplugs; the conventional type spark plug that consists of a centre electrode with a copper core, and a plug with an iridium based electrode tip. From the outcomes of the experiments, the engine efficiency is improved, and emissions are controlled by using iridium spark plugs compared to the conventional type spark plugs. At a higher blend of 25%, PPO performance and emissions are analysed and presented in this research. The oxides of nitrogen emissions of engine fuelled with 25% of the plastic oil blend are 13% reduced, and 4.5% brake thermal efficiency are enhanced by using iridium spark plugs compared to 25% of plastic oil by using the conventional type of spark plugs at full load conditions.
期刊介绍:
The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.