Influence of hot forging on microstructure in double tempered H11 hot forging dies

IF 0.9 4区 材料科学 Q3 METALLURGY & METALLURGICAL ENGINEERING Metallurgical Research & Technology Pub Date : 2022-01-01 DOI:10.1051/metal/2022004
Sam Joshy, Jayadevan K.R., Merin Sarah George, Benrose Prasad
{"title":"Influence of hot forging on microstructure in double tempered H11 hot forging dies","authors":"Sam Joshy, Jayadevan K.R., Merin Sarah George, Benrose Prasad","doi":"10.1051/metal/2022004","DOIUrl":null,"url":null,"abstract":"Hot forging dies are exposed to severe in-service thermomechanical stress, which induces microstructural changes leading to die failures. Thus, research in forging industries is focussed on study of in-service microstructural changes in hot forging dies. Hot forging tests were performed on double tempered AISI H11 steel dies for test duration of 100 and 500 forging strokes. Further, microstructural analyses were conducted on die surface. From microstructural analyses on die surface, it was revealed that chromium rich carbides grows in size with increase in number of forging cycles. Further, quantitative analysis of the carbide distribution was performed.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"2 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/metal/2022004","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Hot forging dies are exposed to severe in-service thermomechanical stress, which induces microstructural changes leading to die failures. Thus, research in forging industries is focussed on study of in-service microstructural changes in hot forging dies. Hot forging tests were performed on double tempered AISI H11 steel dies for test duration of 100 and 500 forging strokes. Further, microstructural analyses were conducted on die surface. From microstructural analyses on die surface, it was revealed that chromium rich carbides grows in size with increase in number of forging cycles. Further, quantitative analysis of the carbide distribution was performed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热锻对双回火H11热锻模具组织的影响
热锻模在使用过程中受到严重的热机械应力,导致微观组织变化导致模具失效。因此,锻造行业的研究重点是研究热锻模在使用过程中的微观组织变化。对双回火aisih11钢模具进行了100和500次锻造冲程的热锻试验。进一步对模具表面进行了显微组织分析。通过对模具表面的显微组织分析,发现随着锻造循环次数的增加,富铬碳化物的尺寸逐渐增大。进一步对碳化物的分布进行了定量分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metallurgical Research & Technology
Metallurgical Research & Technology METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.70
自引率
9.10%
发文量
65
审稿时长
4.4 months
期刊介绍: Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags. The journal is listed in the citation index Web of Science and has an Impact Factor. It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.
期刊最新文献
Bend forming of aluminum alloy integral panel: a review Kinetic and mechanical properties of boronized AISI 1020 steel with Baybora-2 powder The method of reducing energy consumption in large blast furnace smelting by increasing top pressure Distribution behavior and deportation of arsenic in copper top-blown smelting process Effect of slag properties and non-uniform bottom blowing gas supply mode on fluid flow and mixing behavior in converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1