Influence of Coating on High Performance Heat Resistant Textile Curtains

M. Vilarinho, P. Araújo, J. Teixeira, Elisabete Silva, Dionísio Silveira, D. Soares, M. Paiva, Daniel Ribeiro, Marisa Branco
{"title":"Influence of Coating on High Performance Heat Resistant Textile Curtains","authors":"M. Vilarinho, P. Araújo, J. Teixeira, Elisabete Silva, Dionísio Silveira, D. Soares, M. Paiva, Daniel Ribeiro, Marisa Branco","doi":"10.1115/imece2021-73307","DOIUrl":null,"url":null,"abstract":"\n The protection of human life and goods assumes a growing concern in all forms of activities. The fire and smoke curtains act as a physical barrier to prevent the fire from spreading between spaces as well as to staunch the smoke and heat transfer to adjacent areas, while causing minimal interference. Usually, curtains are based on fiber structures that can be coated to enhance their protective capabilities. Also, the fiber structure can be developed into a complex pattern of 2D and 3D threads, with single or multiple materials that can be tailored to optimize its behavior. The thermal and fire protection depends on the fibers, fabric pattern and coatings.\n The present paper reports the development of novel coated structures of fibers used for fire protection curtains. Basalt and glass fibers are used as yarn materials.\n Following the certification standards the samples were assessed for their thermal resistance by measuring the temperature differential they provide while their integrity is evaluated. The sample is placed under stress in an attempt to mimic its own weight effect when in service. The temperature is monitored using thermocouples which are placed at both sides of the fabric and the integrity parameter is assessed through the occurrence of fabric rupture and smoke and/or odor release motivated by its deterioration.\n Regarding the uncoated samples, the one composed of glass-fiber in both directions presents the best thermal performance. The addition of an alumina coating significantly improves the performance of all samples. However, while a thinner (0.05 μm) alumina layer provides better results for the sample with glass-fiber in both warp and weft directions, the behavior of samples composed of glass-fiber and basalt is superior when a thicker (0.3 μm) alumina layer is used. In both cases, an alumina coating application results in an increase of the gradient temperature (between curtain inside/outside temperatures) of about 38.0% (310.0 °C vs. 427.0 °C for the first and 386.0 °C vs. 526.0 °C for the latter.","PeriodicalId":23837,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-73307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The protection of human life and goods assumes a growing concern in all forms of activities. The fire and smoke curtains act as a physical barrier to prevent the fire from spreading between spaces as well as to staunch the smoke and heat transfer to adjacent areas, while causing minimal interference. Usually, curtains are based on fiber structures that can be coated to enhance their protective capabilities. Also, the fiber structure can be developed into a complex pattern of 2D and 3D threads, with single or multiple materials that can be tailored to optimize its behavior. The thermal and fire protection depends on the fibers, fabric pattern and coatings. The present paper reports the development of novel coated structures of fibers used for fire protection curtains. Basalt and glass fibers are used as yarn materials. Following the certification standards the samples were assessed for their thermal resistance by measuring the temperature differential they provide while their integrity is evaluated. The sample is placed under stress in an attempt to mimic its own weight effect when in service. The temperature is monitored using thermocouples which are placed at both sides of the fabric and the integrity parameter is assessed through the occurrence of fabric rupture and smoke and/or odor release motivated by its deterioration. Regarding the uncoated samples, the one composed of glass-fiber in both directions presents the best thermal performance. The addition of an alumina coating significantly improves the performance of all samples. However, while a thinner (0.05 μm) alumina layer provides better results for the sample with glass-fiber in both warp and weft directions, the behavior of samples composed of glass-fiber and basalt is superior when a thicker (0.3 μm) alumina layer is used. In both cases, an alumina coating application results in an increase of the gradient temperature (between curtain inside/outside temperatures) of about 38.0% (310.0 °C vs. 427.0 °C for the first and 386.0 °C vs. 526.0 °C for the latter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
涂料对高性能耐热纺织品窗帘性能的影响
在所有形式的活动中,对人的生命和财产的保护日益受到关注。防火和防烟帘作为物理屏障,防止火灾在空间之间蔓延,并阻止烟雾和热量传递到邻近区域,同时造成最小的干扰。通常,窗帘是基于纤维结构,可以涂覆以增强其防护能力。此外,纤维结构可以发展成2D和3D螺纹的复杂图案,可以使用单一或多种材料进行定制以优化其性能。隔热和防火性能取决于纤维、织物图案和涂层。本文报道了用于防火窗帘的新型纤维涂层结构的发展。玄武岩纤维和玻璃纤维是纱线的原料。根据认证标准,通过测量样品提供的温差来评估样品的耐热性,同时评估样品的完整性。样品被置于压力下,试图模拟其在使用时的重量效应。使用放置在织物两侧的热电偶来监测温度,并通过织物破裂的发生以及由其劣化引起的烟雾和/或气味释放来评估完整性参数。对于未包覆的样品,双向玻璃纤维组成的样品表现出最好的热性能。氧化铝涂层的加入显著提高了所有样品的性能。然而,当氧化铝层较薄(0.05 μm)时,经向和纬向玻璃纤维样品的性能都较好,而当氧化铝层较厚(0.3 μm)时,玻璃纤维和玄武岩样品的性能都较好。在这两种情况下,氧化铝涂层的应用导致梯度温度(窗帘内外温度之间)增加约38.0%(310.0°C vs. 427.0°C, 386.0°C vs. 526.0°C)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Evaluation of Tribological Performance of Laser Micro-Texturing Ti6Al4V Under Lubrication With Protic Ionic Liquid Strength and Quality of Recycled Acrylonitrile Butadiene Styrene (ABS) Crystalline Phase Changes Due to High-Speed Projectiles Impact on HY100 Steel Mechanical Properties of Snap-Fits Fabricated by Selective Laser Sintering From Polyamide Chemical Structure Analysis of Carbon-Doped Silicon Oxide Thin Films by Plasma-Enhanced Chemical Vapor Deposition of Tetrakis(Trimethylsilyloxy)Silane Precursor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1