Counterparty Credit Limits: The Impact of a Risk-Mitigation Measure on Everyday Trading

M. Gould, N. Hautsch, S. Howison, M. A. Porter
{"title":"Counterparty Credit Limits: The Impact of a Risk-Mitigation Measure on Everyday Trading","authors":"M. Gould, N. Hautsch, S. Howison, M. A. Porter","doi":"10.1080/1350486X.2021.1893770","DOIUrl":null,"url":null,"abstract":"ABSTRACT A counterparty credit limit (CCL) is a limit that is imposed by a financial institution to cap its maximum possible exposure to a specified counterparty. CCLs help institutions to mitigate counterparty credit risk via selective diversification of their exposures. In this paper, we analyse how CCLs impact the prices that institutions pay for their trades during everyday trading. We study a high-quality data set from a large electronic trading platform in the foreign exchange spot market that allows institutions to apply CCLs. We find empirically that CCLs had little impact on the vast majority of trades in this data set. We also study the impact of CCLs using a new model of trading. By simulating our model with different underlying CCL networks, we highlight that CCLs can have a major impact in some situations.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"1 1","pages":"520 - 548"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2021.1893770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT A counterparty credit limit (CCL) is a limit that is imposed by a financial institution to cap its maximum possible exposure to a specified counterparty. CCLs help institutions to mitigate counterparty credit risk via selective diversification of their exposures. In this paper, we analyse how CCLs impact the prices that institutions pay for their trades during everyday trading. We study a high-quality data set from a large electronic trading platform in the foreign exchange spot market that allows institutions to apply CCLs. We find empirically that CCLs had little impact on the vast majority of trades in this data set. We also study the impact of CCLs using a new model of trading. By simulating our model with different underlying CCL networks, we highlight that CCLs can have a major impact in some situations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
交易对手信用限额:风险缓解措施对日常交易的影响
交易对手信用额度(CCL)是金融机构为限制其对特定交易对手的最大可能敞口而施加的限制。ccl通过选择性分散风险敞口,帮助机构降低交易对手信用风险。在本文中,我们分析了ccl如何影响机构在日常交易中为其交易支付的价格。我们研究了来自外汇现货市场上一个大型电子交易平台的高质量数据集,该数据集允许机构应用ccl。我们从经验上发现,ccl对该数据集中绝大多数交易的影响很小。我们还使用一种新的交易模型来研究ccl的影响。通过用不同的底层CCL网络模拟我们的模型,我们强调CCL在某些情况下可以产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
期刊最新文献
Price Impact Without Averaging On the Skew and Curvature of the Implied and Local Volatilities Arbitrage-Free Neural-SDE Market Models Policy Gradient Learning Methods for Stochastic Control with Exit Time and Applications to Share Repurchase Pricing Multi-Period Mean Expected-Shortfall Strategies: ‘Cut Your Losses and Ride Your Gains’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1