Efficient Metropolis Path Sampling for Material Editing and Re-rendering

Tomoya Yamaguchi, Tatsuya Yatagawa, S. Morishima
{"title":"Efficient Metropolis Path Sampling for Material Editing and Re-rendering","authors":"Tomoya Yamaguchi, Tatsuya Yatagawa, S. Morishima","doi":"10.2312/pg.20181271","DOIUrl":null,"url":null,"abstract":"This paper proposes efficient path sampling for re-rendering scenes after material editing. The proposed sampling method is based on Metropolis light transport (MLT) and distributes more path samples to pixels whose values have been changed significantly by editing. First, we calculate the difference between images before and after editing to estimate the changes in pixel values. In this step, we render the difference image directly rather than calculating the difference in the images by separately rendering the images before and after editing. Then, we sample more paths for pixels with larger difference values and render the scene after editing by reducing variances of Monte Carlo estimators using the control variates. Thus, we can obtain rendering results with a small amount of noise using only a small number of path samples. We examine the proposed sampling method with a range of scenes and demonstrate that it achieves lower estimation errors and variances over the state-of-the-art methods.","PeriodicalId":88304,"journal":{"name":"Proceedings. Pacific Conference on Computer Graphics and Applications","volume":"865 1","pages":"21-24"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/pg.20181271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes efficient path sampling for re-rendering scenes after material editing. The proposed sampling method is based on Metropolis light transport (MLT) and distributes more path samples to pixels whose values have been changed significantly by editing. First, we calculate the difference between images before and after editing to estimate the changes in pixel values. In this step, we render the difference image directly rather than calculating the difference in the images by separately rendering the images before and after editing. Then, we sample more paths for pixels with larger difference values and render the scene after editing by reducing variances of Monte Carlo estimators using the control variates. Thus, we can obtain rendering results with a small amount of noise using only a small number of path samples. We examine the proposed sampling method with a range of scenes and demonstrate that it achieves lower estimation errors and variances over the state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效大都市路径采样材料编辑和重新渲染
本文提出了一种有效的路径采样方法,用于材质编辑后场景的重新渲染。该采样方法基于Metropolis light transport (MLT),将更多的路径样本分布到经过编辑后值发生显著变化的像素上。首先,我们计算编辑前后图像的差值来估计像素值的变化。在这一步中,我们直接渲染差异图像,而不是通过分别渲染编辑前后的图像来计算图像中的差异。然后,我们对具有较大差值的像素进行更多路径采样,并通过使用控制变量减少蒙特卡罗估计器的方差来渲染编辑后的场景。因此,我们可以使用少量的路径样本获得具有少量噪声的渲染结果。我们用一系列场景检验了所提出的采样方法,并证明它比最先进的方法实现了更低的估计误差和方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cloud-Assisted Hybrid Rendering for Thin-Client Games and VR Applications Interactive Deformable Image Registration with Dual Cursor DFGA: Digital Human Faces Generation and Animation from the RGB Video using Modern Deep Learning Technology Aesthetic Enhancement via Color Area and Location Awareness Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1