Deep Blind Hyperspectral Image Fusion

Wu Wang, Weihong Zeng, Yue Huang, Xinghao Ding, J. Paisley
{"title":"Deep Blind Hyperspectral Image Fusion","authors":"Wu Wang, Weihong Zeng, Yue Huang, Xinghao Ding, J. Paisley","doi":"10.1109/ICCV.2019.00425","DOIUrl":null,"url":null,"abstract":"Hyperspectral image fusion (HIF) reconstructs high spatial resolution hyperspectral images from low spatial resolution hyperspectral images and high spatial resolution multispectral images. Previous works usually assume that the linear mapping between the point spread functions of the hyperspectral camera and the spectral response functions of the conventional camera is known. This is unrealistic in many scenarios. We propose a method for blind HIF problem based on deep learning, where the estimation of the observation model and fusion process are optimized iteratively and alternatingly during the super-resolution reconstruction. In addition, the proposed framework enforces simultaneous spatial and spectral accuracy. Using three public datasets, the experimental results demonstrate that the proposed algorithm outperforms existing blind and non-blind methods.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"14 1","pages":"4149-4158"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

Hyperspectral image fusion (HIF) reconstructs high spatial resolution hyperspectral images from low spatial resolution hyperspectral images and high spatial resolution multispectral images. Previous works usually assume that the linear mapping between the point spread functions of the hyperspectral camera and the spectral response functions of the conventional camera is known. This is unrealistic in many scenarios. We propose a method for blind HIF problem based on deep learning, where the estimation of the observation model and fusion process are optimized iteratively and alternatingly during the super-resolution reconstruction. In addition, the proposed framework enforces simultaneous spatial and spectral accuracy. Using three public datasets, the experimental results demonstrate that the proposed algorithm outperforms existing blind and non-blind methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高光谱图像融合(HIF)是由低空间分辨率高光谱图像和高空间分辨率多光谱图像重构高空间分辨率高光谱图像。以往的研究通常假设高光谱相机的点扩展函数与普通相机的光谱响应函数之间的线性映射是已知的。这在很多情况下是不现实的。提出了一种基于深度学习的盲HIF问题的方法,在超分辨率重建过程中迭代交替优化观测模型的估计和融合过程。此外,提出的框架强制同时空间和光谱精度。在三个公开数据集上的实验结果表明,该算法优于现有的盲法和非盲法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Very Long Natural Scenery Image Prediction by Outpainting VTNFP: An Image-Based Virtual Try-On Network With Body and Clothing Feature Preservation Towards Latent Attribute Discovery From Triplet Similarities Gaze360: Physically Unconstrained Gaze Estimation in the Wild Attention Bridging Network for Knowledge Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1