J. Dvořák, J. Švihlík, J. Kybic, B. Radochová, J. Janáček, J. Kukal, Jiri Borovec, D. Habart
{"title":"VOLUME ESTIMATION FROM SINGLE IMAGES: AN APPLICATION TO PANCREATIC ISLETS","authors":"J. Dvořák, J. Švihlík, J. Kybic, B. Radochová, J. Janáček, J. Kukal, Jiri Borovec, D. Habart","doi":"10.5566/IAS.1869","DOIUrl":null,"url":null,"abstract":"The present paper deals with the problem of volume estimation of individual objects from a single 2D view. Our main application is volume estimation of pancreatic (Langerhans) islets and the single 2D view constraint comes from the time and equipment limitations of the standard clinical procedure.Two main approaches are followed in this paper. First, two regression-based methods are proposed, using a set of simple shape descriptors of the segmented image of the islet. Second, two example-based methods are proposed, based on a database of islets with known volume. For training and evaluation, islet volumes were determined by OPT microscopy and a semi-automatical stereological volume estimation using the so-called Fakir probes.The performance of the single image volume estimation methods is studied on a set of 99 islets from human donors. Further experiments were also performed on a stone dataset and on synthetic 3D shapes, generated using a flexible stochastic particle model. The proposed methods are fast and the experimental results show that in most situations the proposed methods perform significantly better than the methods currently used in clinical practice, which are based on simple spherical or ellipsoidal models.","PeriodicalId":49062,"journal":{"name":"Image Analysis & Stereology","volume":"47 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Analysis & Stereology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5566/IAS.1869","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
The present paper deals with the problem of volume estimation of individual objects from a single 2D view. Our main application is volume estimation of pancreatic (Langerhans) islets and the single 2D view constraint comes from the time and equipment limitations of the standard clinical procedure.Two main approaches are followed in this paper. First, two regression-based methods are proposed, using a set of simple shape descriptors of the segmented image of the islet. Second, two example-based methods are proposed, based on a database of islets with known volume. For training and evaluation, islet volumes were determined by OPT microscopy and a semi-automatical stereological volume estimation using the so-called Fakir probes.The performance of the single image volume estimation methods is studied on a set of 99 islets from human donors. Further experiments were also performed on a stone dataset and on synthetic 3D shapes, generated using a flexible stochastic particle model. The proposed methods are fast and the experimental results show that in most situations the proposed methods perform significantly better than the methods currently used in clinical practice, which are based on simple spherical or ellipsoidal models.
期刊介绍:
Image Analysis and Stereology is the official journal of the International Society for Stereology & Image Analysis. It promotes the exchange of scientific, technical, organizational and other information on the quantitative analysis of data having a geometrical structure, including stereology, differential geometry, image analysis, image processing, mathematical morphology, stochastic geometry, statistics, pattern recognition, and related topics. The fields of application are not restricted and range from biomedicine, materials sciences and physics to geology and geography.