D. Fabiani, G. Montanari, A. Dardano, G. Guastavino, L. Testa, M. Sangermano
{"title":"Space Charge Dynamics in Nanostructured Epoxy Resin","authors":"D. Fabiani, G. Montanari, A. Dardano, G. Guastavino, L. Testa, M. Sangermano","doi":"10.1109/CEIDP.2008.4772851","DOIUrl":null,"url":null,"abstract":"The results of a comparative analysis performed on specimens of nanostructured epoxy resins obtained by different filler concentrations are reported in this paper. The specimens were prepared by dispersion of bohemite nanoparticles into a cycloaliphatic epoxy resin cross linked under UV. Dielectric properties, in particular space charge accumulation, are measured as a function of nanofiller content. Results indicate that space charge build up and charge mobility are affected largely by filler content. Concentrations of nanofiller of 5-7 wt% show a significant decrease of the space charge with respect to the base epoxy-resin and an increased mobility of negative carriers.","PeriodicalId":6381,"journal":{"name":"2008 Annual Report Conference on Electrical Insulation and Dielectric Phenomena","volume":"76 1","pages":"710-713"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Annual Report Conference on Electrical Insulation and Dielectric Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP.2008.4772851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
The results of a comparative analysis performed on specimens of nanostructured epoxy resins obtained by different filler concentrations are reported in this paper. The specimens were prepared by dispersion of bohemite nanoparticles into a cycloaliphatic epoxy resin cross linked under UV. Dielectric properties, in particular space charge accumulation, are measured as a function of nanofiller content. Results indicate that space charge build up and charge mobility are affected largely by filler content. Concentrations of nanofiller of 5-7 wt% show a significant decrease of the space charge with respect to the base epoxy-resin and an increased mobility of negative carriers.