{"title":"CloudVisor: retrofitting protection of virtual machines in multi-tenant cloud with nested virtualization","authors":"Fengzhe Zhang, Jin Chen, Haibo Chen, B. Zang","doi":"10.1145/2043556.2043576","DOIUrl":null,"url":null,"abstract":"Multi-tenant cloud, which usually leases resources in the form of virtual machines, has been commercially available for years. Unfortunately, with the adoption of commodity virtualized infrastructures, software stacks in typical multi-tenant clouds are non-trivially large and complex, and thus are prone to compromise or abuse from adversaries including the cloud operators, which may lead to leakage of security-sensitive data. In this paper, we propose a transparent, backward-compatible approach that protects the privacy and integrity of customers' virtual machines on commodity virtualized infrastructures, even facing a total compromise of the virtual machine monitor (VMM) and the management VM. The key of our approach is the separation of the resource management from security protection in the virtualization layer. A tiny security monitor is introduced underneath the commodity VMM using nested virtualization and provides protection to the hosted VMs. As a result, our approach allows virtualization software (e.g., VMM, management VM and tools) to handle complex tasks of managing leased VMs for the cloud, without breaking security of users' data inside the VMs. We have implemented a prototype by leveraging commercially-available hardware support for virtualization. The prototype system, called CloudVisor, comprises only 5.5K LOCs and supports the Xen VMM with multiple Linux and Windows as the guest OSes. Performance evaluation shows that CloudVisor incurs moderate slow-down for I/O intensive applications and very small slowdown for other applications.","PeriodicalId":20672,"journal":{"name":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"412","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2043556.2043576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 412
Abstract
Multi-tenant cloud, which usually leases resources in the form of virtual machines, has been commercially available for years. Unfortunately, with the adoption of commodity virtualized infrastructures, software stacks in typical multi-tenant clouds are non-trivially large and complex, and thus are prone to compromise or abuse from adversaries including the cloud operators, which may lead to leakage of security-sensitive data. In this paper, we propose a transparent, backward-compatible approach that protects the privacy and integrity of customers' virtual machines on commodity virtualized infrastructures, even facing a total compromise of the virtual machine monitor (VMM) and the management VM. The key of our approach is the separation of the resource management from security protection in the virtualization layer. A tiny security monitor is introduced underneath the commodity VMM using nested virtualization and provides protection to the hosted VMs. As a result, our approach allows virtualization software (e.g., VMM, management VM and tools) to handle complex tasks of managing leased VMs for the cloud, without breaking security of users' data inside the VMs. We have implemented a prototype by leveraging commercially-available hardware support for virtualization. The prototype system, called CloudVisor, comprises only 5.5K LOCs and supports the Xen VMM with multiple Linux and Windows as the guest OSes. Performance evaluation shows that CloudVisor incurs moderate slow-down for I/O intensive applications and very small slowdown for other applications.