Effect of Temperature and Time on Nickel Aluminide Coating Deposition

A. Chandio, S. Abro
{"title":"Effect of Temperature and Time on Nickel Aluminide Coating Deposition","authors":"A. Chandio, S. Abro","doi":"10.22581/MUET1982.1804.04","DOIUrl":null,"url":null,"abstract":"The βNiAl coating was deposited onto Nickel based CMSX-4 superalloy by in-situ CVD (Chemical Vapor Deposition) method. Main focus of this contribution was to study the influence of aluminizing time and temperature on the microstructure and thickness of the coating; this was followed by examination by XRD (X-Ray Diffraction), electron microscope. Results suggest that an incremental variation in temperature alters the coating activities from HA (High Activity) to LA (Low Activity). This is exhibited by the resultant CT (Coating Thickness) since HA coatings are thicker than LA counterparts. The microstructure of the coating formed at low temperature (or HA ones) showed a large amount of α-Cr precipitates while one formed at high temperature (or LA ones) exhibited lower amounts of such precipitates. Moreover, incremental aluminizing time showed linear trend of CT at initial stage, thereafter (10 hrs) it leveled off. Whereas it does not affect microstructure of the coating","PeriodicalId":11240,"journal":{"name":"Day 1 Tue, October 23, 2018","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, October 23, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22581/MUET1982.1804.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The βNiAl coating was deposited onto Nickel based CMSX-4 superalloy by in-situ CVD (Chemical Vapor Deposition) method. Main focus of this contribution was to study the influence of aluminizing time and temperature on the microstructure and thickness of the coating; this was followed by examination by XRD (X-Ray Diffraction), electron microscope. Results suggest that an incremental variation in temperature alters the coating activities from HA (High Activity) to LA (Low Activity). This is exhibited by the resultant CT (Coating Thickness) since HA coatings are thicker than LA counterparts. The microstructure of the coating formed at low temperature (or HA ones) showed a large amount of α-Cr precipitates while one formed at high temperature (or LA ones) exhibited lower amounts of such precipitates. Moreover, incremental aluminizing time showed linear trend of CT at initial stage, thereafter (10 hrs) it leveled off. Whereas it does not affect microstructure of the coating
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
温度和时间对铝化镍镀层沉积的影响
采用原位化学气相沉积(CVD)方法在镍基CMSX-4高温合金表面沉积βNiAl涂层。重点研究了渗铝时间和渗铝温度对镀层组织和厚度的影响;然后用XRD (x射线衍射)、电子显微镜检查。结果表明,随着温度的增加,涂层活性从HA(高活性)转变为LA(低活性)。由于HA涂层比LA涂层厚,因此由此产生的CT(涂层厚度)显示了这一点。低温形成的涂层(HA)组织中α-Cr析出物较多,高温形成的涂层(LA)组织中α-Cr析出物较少。增量渗铝时间在初始阶段呈线性趋势,10小时后趋于平稳。而不影响涂层的微观组织
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Investigation of Crude Oil Emulsion Stability: Effect of Oil and Brine Compositions, Asphaltene, Wax, Toluene-insolubles, Temperature, Shear-stress, and Water-cut Simple Numerical Simulations to Demonstrate Key Concepts Related to Coal Seam Gas Well Integrity The Lean Fluid Lifecycle: Optimizing Consumption and Waste in Hydraulic Fracturing Operations Application of Novel Predictive Analytics for Data Allocation of Commingled Production in Smart Fields A Multiscale Study on The Onset of Sand Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1