Selecting Genes with Dissimilar Discrimination Strength for Sample Class Prediction

Zhipeng Cai, R. Goebel, M. Salavatipour, Yi Shi, Lizhe Xu, Guohui Lin
{"title":"Selecting Genes with Dissimilar Discrimination Strength for Sample Class Prediction","authors":"Zhipeng Cai, R. Goebel, M. Salavatipour, Yi Shi, Lizhe Xu, Guohui Lin","doi":"10.1142/9781860947995_0011","DOIUrl":null,"url":null,"abstract":"them all in classication is largely redundant. Furthermore, these selected genes can prevent the consideration of other individually-less but collectively-more dieren tially expressed genes. We propose to cluster genes in terms of their class discrimination strength and to limit the number of selected genes per cluster. By combining this idea with several existing single gene scoring methods, we show by experiments on two cancer microarray datasets that our methods identify gene subsets which collectively have signican tly higher classication accuracies.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"2014 1","pages":"81-90"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947995_0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

them all in classication is largely redundant. Furthermore, these selected genes can prevent the consideration of other individually-less but collectively-more dieren tially expressed genes. We propose to cluster genes in terms of their class discrimination strength and to limit the number of selected genes per cluster. By combining this idea with several existing single gene scoring methods, we show by experiments on two cancer microarray datasets that our methods identify gene subsets which collectively have signican tly higher classication accuracies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
选择不同鉴别强度的基因进行样本分类预测
这些分类在很大程度上是多余的。此外,这些被选择的基因可以防止考虑其他个别的(但不是集体的)更多不同表达的基因。我们建议根据它们的类区分强度对基因进行聚类,并限制每聚类所选择的基因的数量。通过将这一想法与几种现有的单基因评分方法相结合,我们在两个癌症微阵列数据集上的实验表明,我们的方法识别出的基因子集具有显着更高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tuning Privacy-Utility Tradeoff in Genomic Studies Using Selective SNP Hiding. The Future of Bioinformatics CHEMICAL COMPOUND CLASSIFICATION WITH AUTOMATICALLY MINED STRUCTURE PATTERNS. Predicting Nucleolar Proteins Using Support-Vector Machines Proceedings of the 6th Asia-Pacific Bioinformatics Conference, APBC 2008, 14-17 January 2008, Kyoto, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1