{"title":"Optimización experimental del proceso de liofilización de uchuva adicionada con componentes activos","authors":"R. Cortés, H. Herrera, S. Rodríguez","doi":"10.17533/UDEA.VITAE.V22N1A06","DOIUrl":null,"url":null,"abstract":"Introduction: Experimental optimization processes represent an effective tool for improving the quality of products, contributing to the diversification of products in the agricultural value chain of cape gooseberry, as promising export fruit. Aim: The aim of this study was to optimize the freeze-drying process to obtain hemispherical cape gooseberries (Physalis peruviana L.) with added active compounds, and with excellent quality attributes. Methods: The hemispherical samples (3 - 4 g) were initially treated by vacuum impregnation with an emulsion containing soybean protein, sucralose, surfactants, calcium, vitamin D3 (cholecalciferol), vitamin E (DL-α-tocopherol acetate) and vitamin B9. The experimental optimization of the freeze-drying was performed using a factorial design 22 to determine the optimum operating condition, using as independent variables the rate of heating plate (°C/min) and holding time at the temperature of the plate for each segment of the process and as dependent variables: concentration of physiologically active components, water activity, moisture content, texture, color and total processing time. Results: An influence of process conditions on the response variables was identified, where a portion of 49 g of freeze-dried gooseberries reached over 20% content of daily reference value (DRV) of vitamin D and between 10 and 20% of DRV in calcium and vitamin B9, C and E; allowing to identify the product as “Excellent source of vitamin D” and “Good source of calcium and vitamin B9, C, E”, according to Colombian regulations. The optimal process condition was reached at a 0.04 °C/min heating rate of plate and a 1.2 h holding time of the plate temperature. Conclusions: The application of the integrated processes of vacuum impregnation and freeze-drying show an important technological alternative to development of functional foods from the fruit of cape gooseberry.","PeriodicalId":23515,"journal":{"name":"Vitae-revista De La Facultad De Quimica Farmaceutica","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vitae-revista De La Facultad De Quimica Farmaceutica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17533/UDEA.VITAE.V22N1A06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Introduction: Experimental optimization processes represent an effective tool for improving the quality of products, contributing to the diversification of products in the agricultural value chain of cape gooseberry, as promising export fruit. Aim: The aim of this study was to optimize the freeze-drying process to obtain hemispherical cape gooseberries (Physalis peruviana L.) with added active compounds, and with excellent quality attributes. Methods: The hemispherical samples (3 - 4 g) were initially treated by vacuum impregnation with an emulsion containing soybean protein, sucralose, surfactants, calcium, vitamin D3 (cholecalciferol), vitamin E (DL-α-tocopherol acetate) and vitamin B9. The experimental optimization of the freeze-drying was performed using a factorial design 22 to determine the optimum operating condition, using as independent variables the rate of heating plate (°C/min) and holding time at the temperature of the plate for each segment of the process and as dependent variables: concentration of physiologically active components, water activity, moisture content, texture, color and total processing time. Results: An influence of process conditions on the response variables was identified, where a portion of 49 g of freeze-dried gooseberries reached over 20% content of daily reference value (DRV) of vitamin D and between 10 and 20% of DRV in calcium and vitamin B9, C and E; allowing to identify the product as “Excellent source of vitamin D” and “Good source of calcium and vitamin B9, C, E”, according to Colombian regulations. The optimal process condition was reached at a 0.04 °C/min heating rate of plate and a 1.2 h holding time of the plate temperature. Conclusions: The application of the integrated processes of vacuum impregnation and freeze-drying show an important technological alternative to development of functional foods from the fruit of cape gooseberry.